mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-09 21:51:47 +00:00
Small edits (#630)
This commit is contained in:
parent
48794f3104
commit
ee9db1f209
@ -11,7 +11,7 @@ remote machine. The ClearML PyCharm plugin detects the git details on the local
|
||||
machine, and passes that information to the remote machine to be registered to a [task](../../fundamentals/task.md).
|
||||
|
||||
* Pass user credentials to a remote machine - Multiple users can use the same resource for execution without compromising
|
||||
private credentials (assuming the entire code base, including `.git` already exists on the remote machine)
|
||||
private credentials (assuming the entire code base, including `.git` already exists on the remote machine).
|
||||
|
||||
* Run the [ClearML Agent](../../clearml_agent.md) on default VMs/Containers.
|
||||
|
||||
|
@ -139,7 +139,7 @@ The relevant label is applied to all masks in the version according to the versi
|
||||
Frames can contain multiple masks. To add multiple masks, use the SingleFrame’s `masks_source` property. Input one of
|
||||
the following:
|
||||
* A dictionary with mask string ID keys and mask URI values
|
||||
* A list of mask URIs. Number IDs are automatically assigned to the masks ( "00", "01", etc.)
|
||||
* A list of mask URIs. Number IDs are automatically assigned to the masks ("00", "01", etc.)
|
||||
|
||||
```python
|
||||
frame = SingleFrame(source='https://s3.amazonaws.com/allegro-datasets/cityscapes/leftImg8bit_trainvaltest/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png',)
|
||||
|
@ -21,7 +21,7 @@ task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
|
||||
uncommitted code, python environment, all information logged through `TensorboardLogger`, and more.
|
||||
|
||||
Visualize all the captured information in the experiment's page in ClearML's [WebApp](#webapp)
|
||||
Visualize all the captured information in the experiment's page in ClearML's [WebApp](#webapp).
|
||||
|
||||
See a code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/ignite/cifar_ignite.py).
|
||||
|
||||
|
@ -44,7 +44,7 @@ For example:
|
||||
|
||||
```python
|
||||
auto_connect_frameworks={
|
||||
'matplotlib': True, 'tensorflow': False, 'tensorboard': False, 'pytorch': True,
|
||||
'tensorflow': False, 'matplotlib': True, 'tensorboard': False, 'pytorch': True,
|
||||
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
|
||||
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
|
||||
'megengine': True, 'jsonargparse': True, 'catboost': True
|
||||
|
@ -96,7 +96,7 @@ See [Explicit Reporting Tutorial](../guides/reporting/explicit_reporting.md).
|
||||
|
||||
## Examples
|
||||
|
||||
Take a look at ClearML's XGBoost examples. The examples use XGBOost and ClearML in different configurations with
|
||||
Take a look at ClearML's XGBoost examples. The examples use XGBoost and ClearML in different configurations with
|
||||
additional tools, like Matplotlib and scikit-learn:
|
||||
* [XGBoost Metric](../guides/frameworks/xgboost/xgboost_metrics.md) - Demonstrates ClearML automatic logging of XGBoost models and plots
|
||||
* [XGBoost and scikit-learn](../guides/frameworks/xgboost/xgboost_sample.md) - Demonstrates ClearML automatic logging of XGBoost scalars and models
|
||||
|
@ -32,7 +32,7 @@ The models table contains the following columns:
|
||||
| Column | Description | Type |
|
||||
|---|---|---|
|
||||
| **RUN** | Pipeline run identifier | String |
|
||||
| **VERSION** | The pipeline version number. Corresponds to the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md#class-pipelinecontroller) ’s and [PipelineDecorator](../../references/sdk/automation_controller_pipelinecontroller.md#class-automationcontrollerpipelinedecorator)’s `version` parameter | Version string |
|
||||
| **VERSION** | The pipeline version number. Corresponds to the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md#class-pipelinecontroller)’s and [PipelineDecorator](../../references/sdk/automation_controller_pipelinecontroller.md#class-automationcontrollerpipelinedecorator)’s `version` parameter | Version string |
|
||||
| **TAGS** | Descriptive, user-defined, color-coded tags assigned to run. | Tag |
|
||||
| **STATUS** | Pipeline run's status. See a list of the [task states and state transitions](../../fundamentals/task.md#task-states). For Running, Failed, and Aborted runs, you will also see a progress indicator next to the status. See [here](../../pipelines/pipelines.md#tracking-pipeline-progress). | String |
|
||||
| **USER** | User who created the run. | String |
|
||||
|
@ -172,7 +172,7 @@ module.exports = {
|
||||
{'Scikit-Learn': ['guides/frameworks/scikit-learn/sklearn_joblib_example', 'guides/frameworks/scikit-learn/sklearn_matplotlib_example']},
|
||||
{'TensorBoardX': ['guides/frameworks/tensorboardx/tensorboardx', "guides/frameworks/tensorboardx/video_tensorboardx"]},
|
||||
{
|
||||
'Tensorflow': ['guides/frameworks/tensorflow/tensorboard_pr_curve', 'guides/frameworks/tensorflow/tensorboard_toy',
|
||||
'TensorFlow': ['guides/frameworks/tensorflow/tensorboard_pr_curve', 'guides/frameworks/tensorflow/tensorboard_toy',
|
||||
'guides/frameworks/tensorflow/tensorflow_mnist', 'guides/frameworks/tensorflow/integration_keras_tuner']
|
||||
},
|
||||
{'XGBoost': ['guides/frameworks/xgboost/xgboost_sample', 'guides/frameworks/xgboost/xgboost_metrics']}
|
||||
|
Loading…
Reference in New Issue
Block a user