Small edits (#630)

This commit is contained in:
pollfly 2023-08-01 17:05:53 +03:00 committed by GitHub
parent 48794f3104
commit ee9db1f209
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 17 additions and 17 deletions

View File

@ -11,7 +11,7 @@ remote machine. The ClearML PyCharm plugin detects the git details on the local
machine, and passes that information to the remote machine to be registered to a [task](../../fundamentals/task.md).
* Pass user credentials to a remote machine - Multiple users can use the same resource for execution without compromising
private credentials (assuming the entire code base, including `.git` already exists on the remote machine)
private credentials (assuming the entire code base, including `.git` already exists on the remote machine).
* Run the [ClearML Agent](../../clearml_agent.md) on default VMs/Containers.

View File

@ -139,7 +139,7 @@ The relevant label is applied to all masks in the version according to the versi
Frames can contain multiple masks. To add multiple masks, use the SingleFrames `masks_source` property. Input one of
the following:
* A dictionary with mask string ID keys and mask URI values
* A list of mask URIs. Number IDs are automatically assigned to the masks ( "00", "01", etc.)
* A list of mask URIs. Number IDs are automatically assigned to the masks ("00", "01", etc.)
```python
frame = SingleFrame(source='https://s3.amazonaws.com/allegro-datasets/cityscapes/leftImg8bit_trainvaltest/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png',)

View File

@ -21,7 +21,7 @@ task = Task.init(task_name="<task_name>", project_name="<project_name>")
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
uncommitted code, python environment, all information logged through `TensorboardLogger`, and more.
Visualize all the captured information in the experiment's page in ClearML's [WebApp](#webapp)
Visualize all the captured information in the experiment's page in ClearML's [WebApp](#webapp).
See a code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/ignite/cifar_ignite.py).

View File

@ -44,7 +44,7 @@ For example:
```python
auto_connect_frameworks={
'matplotlib': True, 'tensorflow': False, 'tensorboard': False, 'pytorch': True,
'tensorflow': False, 'matplotlib': True, 'tensorboard': False, 'pytorch': True,
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
'megengine': True, 'jsonargparse': True, 'catboost': True

View File

@ -96,7 +96,7 @@ See [Explicit Reporting Tutorial](../guides/reporting/explicit_reporting.md).
## Examples
Take a look at ClearML's XGBoost examples. The examples use XGBOost and ClearML in different configurations with
Take a look at ClearML's XGBoost examples. The examples use XGBoost and ClearML in different configurations with
additional tools, like Matplotlib and scikit-learn:
* [XGBoost Metric](../guides/frameworks/xgboost/xgboost_metrics.md) - Demonstrates ClearML automatic logging of XGBoost models and plots
* [XGBoost and scikit-learn](../guides/frameworks/xgboost/xgboost_sample.md) - Demonstrates ClearML automatic logging of XGBoost scalars and models

View File

@ -32,7 +32,7 @@ The models table contains the following columns:
| Column | Description | Type |
|---|---|---|
| **RUN** | Pipeline run identifier | String |
| **VERSION** | The pipeline version number. Corresponds to the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md#class-pipelinecontroller) s and [PipelineDecorator](../../references/sdk/automation_controller_pipelinecontroller.md#class-automationcontrollerpipelinedecorator)s `version` parameter | Version string |
| **VERSION** | The pipeline version number. Corresponds to the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md#class-pipelinecontroller)s and [PipelineDecorator](../../references/sdk/automation_controller_pipelinecontroller.md#class-automationcontrollerpipelinedecorator)s `version` parameter | Version string |
| **TAGS** | Descriptive, user-defined, color-coded tags assigned to run. | Tag |
| **STATUS** | Pipeline run's status. See a list of the [task states and state transitions](../../fundamentals/task.md#task-states). For Running, Failed, and Aborted runs, you will also see a progress indicator next to the status. See [here](../../pipelines/pipelines.md#tracking-pipeline-progress). | String |
| **USER** | User who created the run. | String |

View File

@ -172,7 +172,7 @@ module.exports = {
{'Scikit-Learn': ['guides/frameworks/scikit-learn/sklearn_joblib_example', 'guides/frameworks/scikit-learn/sklearn_matplotlib_example']},
{'TensorBoardX': ['guides/frameworks/tensorboardx/tensorboardx', "guides/frameworks/tensorboardx/video_tensorboardx"]},
{
'Tensorflow': ['guides/frameworks/tensorflow/tensorboard_pr_curve', 'guides/frameworks/tensorflow/tensorboard_toy',
'TensorFlow': ['guides/frameworks/tensorflow/tensorboard_pr_curve', 'guides/frameworks/tensorflow/tensorboard_toy',
'guides/frameworks/tensorflow/tensorflow_mnist', 'guides/frameworks/tensorflow/integration_keras_tuner']
},
{'XGBoost': ['guides/frameworks/xgboost/xgboost_sample', 'guides/frameworks/xgboost/xgboost_metrics']}