mirror of
https://github.com/clearml/clearml-docs
synced 2025-06-26 18:17:44 +00:00
Small edits (#162)
This commit is contained in:
@@ -17,8 +17,7 @@ dataset), and reports (uploads) the following to the main Task:
|
||||
Each Task in a subprocess references the main Task by calling [Task.current_task](../../references/sdk/task#taskcurrent_task), which always returns
|
||||
the main Task.
|
||||
|
||||
When the script runs, it creates an experiment named `test torch distributed`, which is associated with the `examples` project
|
||||
in the **ClearML Web UI**.
|
||||
When the script runs, it creates an experiment named `test torch distributed`, which is associated with the `examples` project.
|
||||
|
||||
## Artifacts
|
||||
|
||||
|
||||
@@ -32,7 +32,7 @@ clearml-session --docker nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 --packages
|
||||
* Specify the resource queue `--queue default`.
|
||||
|
||||
:::note
|
||||
There is an option to enter a project name using `--project <name>`. If no project is input, the default project
|
||||
Enter a project name using `--project <name>`. If no project is input, the default project
|
||||
name is "DevOps"
|
||||
:::
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ The ClearML [AWS autoscaler example](https://github.com/allegroai/clearml/blob/m
|
||||
demonstrates how to use the [`clearml.automation.auto_scaler`](https://github.com/allegroai/clearml/blob/master/clearml/automation/auto_scaler.py)
|
||||
module to implement a service that optimizes AWS EC2 instance scaling according to a defined instance budget.
|
||||
|
||||
It periodically polls your AWS cluster and automatically stops idle instances based on a defined maximum idle time or spins
|
||||
The autoscaler periodically polls your AWS cluster and automatically stops idle instances based on a defined maximum idle time or spins
|
||||
up new instances when there aren't enough to execute pending tasks.
|
||||
|
||||
## Running the ClearML AWS Autoscaler
|
||||
|
||||
Reference in New Issue
Block a user