mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-03 02:32:49 +00:00
Small edits (#690)
This commit is contained in:
parent
3a4b10e43b
commit
e6257d2843
@ -197,7 +197,7 @@ These methods can be used on `Model`, `InputModel`, and/or `OutputModel` objects
|
||||
* Table - [`report_table`](../references/sdk/model_outputmodel.md#report_table)
|
||||
* Line plot - [`report_line_plot`](../references/sdk/model_outputmodel.md#report_line_plot)
|
||||
* Scatter plot - [`report_scatter2d`](../references/sdk/model_outputmodel.md#report_scatter2d)
|
||||
* Confusion matrix (heat map) - [`report_confusion_matrix`](../references/sdk/model_outputmodel.md#report_confusion_matrix) and [`report_matrix`](../references/sdk/model_outputmodel.md#report_matrix)
|
||||
* Confusion matrix (heat map) - [`report_confusion_matrix`](../references/sdk/model_outputmodel.md#report_confusion_matrix)
|
||||
* 3d plots
|
||||
* Scatter plot - [`report_scatter3d`](../references/sdk/model_outputmodel.md#report_scatter3d)
|
||||
* Surface plot - [`report_surface`](../references/sdk/model_outputmodel.md#report_surface)
|
||||
|
@ -302,7 +302,7 @@ from `system_site_packages`
|
||||
* `AWS_SECRET_ACCESS_KEY`
|
||||
* `AZURE_STORAGE_KEY`
|
||||
|
||||
* To mask additional environment variables, add their keys to the `extra_keys` list.
|
||||
* To mask additional environment variables, add their keys to the `extra_keys` list.
|
||||
For example, to hide the value of a custom environment variable named `MY_SPECIAL_PASSWORD`, set `extra_keys: ["MY_SPECIAL_PASSWORD"]`
|
||||
|
||||
* By default, `parse_embedded_urls` is set to `true`, so agent will also hide passwords in URLs and handle environment variables
|
||||
@ -733,7 +733,7 @@ This configuration option is experimental, and has not been vigorously tested, s
|
||||
|
||||
**`api.credentials`** (*dict*)
|
||||
|
||||
* Dictionary of API credentials.
|
||||
* Dictionary of API credentials.
|
||||
Alternatively, specify the environment variable `CLEARML_API_ACCESS_KEY` / `CLEARML_API_SECRET_KEY` to override these keys.
|
||||
|
||||
|
||||
|
@ -24,12 +24,12 @@ Once you have a Task object you can query the state of the Task, get its model(s
|
||||
## Log Hyperparameters
|
||||
|
||||
For full reproducibility, it's paramount to save hyperparameters for each experiment. Since hyperparameters can have substantial impact
|
||||
on Model performance, saving and comparing these between experiments is sometimes the key to understanding model behavior.
|
||||
on model performance, saving and comparing these between experiments is sometimes the key to understanding model behavior.
|
||||
|
||||
ClearML supports logging `argparse` module arguments out of the box, so once ClearML is integrated into the code, it automatically logs all parameters provided to the argument parser.
|
||||
|
||||
It's also possible to log parameter dictionaries (very useful when parsing an external config file and storing as a dict object),
|
||||
whole configuration files or even custom objects or [Hydra](https://hydra.cc/docs/intro/) configurations!
|
||||
whole configuration files, or even custom objects or [Hydra](https://hydra.cc/docs/intro/) configurations!
|
||||
|
||||
```python
|
||||
params_dictionary = {'epochs': 3, 'lr': 0.4}
|
||||
@ -51,7 +51,7 @@ See all [storage capabilities](../../integrations/storage.md).
|
||||
|
||||
### Adding Artifacts
|
||||
|
||||
Uploading a local file containing the preprocessed results of the data:
|
||||
Upload a local file containing the preprocessed results of the data:
|
||||
```python
|
||||
task.upload_artifact('/path/to/preprocess_data.csv', name='data')
|
||||
```
|
||||
|
@ -17,12 +17,12 @@ clearml-agent daemon --queue default
|
||||
The script trains a simple deep neural network on the PyTorch built-in MNIST dataset. The following describes the code's
|
||||
execution flow:
|
||||
1. The training runs for one epoch.
|
||||
1. The code passes the `execute_remotely` method which terminates the local execution of the code and enqueues the task
|
||||
1. The code uses [`Task.execute_remotely()`](../../references/sdk/task.md#execute_remotely), which terminates the local execution of the code and enqueues the task
|
||||
to the `default` queue, as specified in the `queue_name` parameter.
|
||||
1. An agent listening to the queue fetches the task and restarts task execution remotely. When the agent executes the task,
|
||||
the `execute_remotely` is considered no-op.
|
||||
|
||||
An execution flow that uses `execute_remotely` method is especially helpful when running code on a development machine for a few iterations
|
||||
An execution flow that uses `execute_remotely` is especially helpful when running code on a development machine for a few iterations
|
||||
to debug and to make sure the code doesn't crash, or to set up an environment. After that, the training can be
|
||||
moved to be executed by a stronger machine.
|
||||
|
||||
@ -41,7 +41,7 @@ Logger.current_logger().report_scalar(
|
||||
)
|
||||
```
|
||||
|
||||
In the `test` method, the code explicitly reports `loss` and `accuracy` scalars.
|
||||
In the script's `test` function, the code explicitly reports `loss` and `accuracy` scalars.
|
||||
|
||||
```python
|
||||
Logger.current_logger().report_scalar(
|
||||
|
@ -22,7 +22,7 @@ When the script runs, it creates an experiment named `test torch distributed` in
|
||||
## Artifacts
|
||||
|
||||
The example uploads a dictionary as an artifact in the main Task by calling [`Task.upload_artifact()`](../../references/sdk/task.md#upload_artifact)
|
||||
on [`Task.current_task`](../../references/sdk/task.md#taskcurrent_task) (the main Task). The dictionary contains the [`dist.rank`](https://pytorch.org/docs/stable/distributed.html#torch.distributed.get_rank)
|
||||
on [`Task.current_task()`](../../references/sdk/task.md#taskcurrent_task) (the main Task). The dictionary contains the [`dist.rank`](https://pytorch.org/docs/stable/distributed.html#torch.distributed.get_rank)
|
||||
of the subprocess, making each unique.
|
||||
|
||||
```python
|
||||
@ -39,7 +39,7 @@ All of these artifacts appear in the main Task under **ARTIFACTS** **>** **OTHER
|
||||
## Scalars
|
||||
|
||||
Loss is reported to the main Task by calling the [`Logger.report_scalar()`](../../references/sdk/logger.md#report_scalar)
|
||||
on `Task.current_task().get_logger()`, which is the logger for the main Task. Since `Logger.report_scalar` is called
|
||||
on `Task.current_task().get_logger()`, which is the main Task's logger. Since `Logger.report_scalar` is called
|
||||
with the same title (`loss`), but a different series name (containing the subprocess' `rank`), all loss scalar series are
|
||||
logged together.
|
||||
|
||||
|
@ -41,7 +41,7 @@ name is "DevOps"
|
||||
After launching the command, the `clearml-agent` listening to the `default` queue spins a remote Jupyter environment with
|
||||
the specifications. It will automatically connect to the docker on the remote machine.
|
||||
|
||||
The terminal should return output with the session's configuration details, which should look something like this:
|
||||
The console should display the session's configuration details, which should look something like this:
|
||||
|
||||
```console
|
||||
Interactive session config:
|
||||
|
@ -106,13 +106,12 @@ logger.report_surface(
|
||||
|
||||
### Confusion Matrices
|
||||
|
||||
Report confusion matrices by calling the [Logger.report_matrix](../../references/sdk/logger.md#report_matrix)
|
||||
method.
|
||||
Report confusion matrices by calling [`Logger.report_confusion_matrix()`](../../references/sdk/logger.md#report_confusion_matrix).
|
||||
|
||||
```python
|
||||
# report confusion matrix
|
||||
confusion = np.random.randint(10, size=(10, 10))
|
||||
logger.report_matrix(
|
||||
logger.report_confusion_matrix(
|
||||
"example_confusion",
|
||||
"ignored",
|
||||
iteration=iteration,
|
||||
@ -126,8 +125,8 @@ logger.report_matrix(
|
||||
|
||||
### Histograms
|
||||
|
||||
Report histograms by calling the [Logger.report_histogram](../../references/sdk/logger.md#report_histogram)
|
||||
method. To report more than one series on the same plot, use the same `title` argument.
|
||||
Report histograms by calling [`Logger.report_histogram()`](../../references/sdk/logger.md#report_histogram).
|
||||
To report more than one series on the same plot, use the same `title` argument.
|
||||
|
||||
```python
|
||||
# report a single histogram
|
||||
@ -170,11 +169,10 @@ logger.report_histogram(
|
||||
|
||||
## Media
|
||||
|
||||
Report audio, HTML, image, and video by calling the [Logger.report_media](../../references/sdk/logger.md#report_media)
|
||||
method using the `local_path` parameter. They appear in **DEBUG SAMPLES**.
|
||||
Report audio, HTML, image, and video by calling [`Logger.report_media()`](../../references/sdk/logger.md#report_media)
|
||||
using the `local_path` parameter. They appear in **DEBUG SAMPLES**.
|
||||
|
||||
The media for these examples is downloaded using the [StorageManager.get_local_copy](../../references/sdk/storage.md#storagemanagerget_local_copy)
|
||||
method.
|
||||
The media for these examples is downloaded using [`StorageManager.get_local_copy()`](../../references/sdk/storage.md#storagemanagerget_local_copy).
|
||||
|
||||
For example, to download an image:
|
||||
|
||||
@ -224,7 +222,7 @@ logger.report_media('video', 'big bunny', iteration=1, local_path=video_local_co
|
||||
|
||||
## Text
|
||||
|
||||
Report text messages by calling the [Logger.report_text](../../references/sdk/logger.md#report_text).
|
||||
Report text messages by calling [`Logger.report_text()`](../../references/sdk/logger.md#report_text).
|
||||
|
||||
```python
|
||||
logger.report_text("hello, this is plain text")
|
||||
|
@ -14,9 +14,9 @@ When the script runs, it creates an experiment named `2D plots reporting` in the
|
||||
|
||||
## Histograms
|
||||
|
||||
Report histograms by calling the [Logger.report_histogram](../../references/sdk/logger.md#report_histogram)
|
||||
method. To report more than one series on the same plot, use same the `title` argument. For different plots, use different
|
||||
`title` arguments. Specify the type of histogram with the `mode` parameter. The `mode` values are `group` (the default),
|
||||
Report histograms by calling [`Logger.report_histogram()`](../../references/sdk/logger.md#report_histogram).
|
||||
To report more than one series on the same plot, use same the `title` argument. For different plots, use different
|
||||
`title` arguments. Specify the type of histogram with the `mode` parameter. The `mode` values are `group` (default),
|
||||
`stack`, and `relative`.
|
||||
|
||||
```python
|
||||
@ -59,13 +59,12 @@ Logger.current_logger().report_histogram(
|
||||
|
||||
## Confusion Matrices
|
||||
|
||||
Report confusion matrices by calling the [Logger.report_matrix](../../references/sdk/logger.md#report_matrix)
|
||||
method.
|
||||
Report confusion matrices by calling [`Logger.report_confusion_matrix()`](../../references/sdk/logger.md#report_confusion_matrix).
|
||||
|
||||
```python
|
||||
# report confusion matrix
|
||||
confusion = np.random.randint(10, size=(10, 10))
|
||||
Logger.current_logger().report_matrix(
|
||||
Logger.current_logger().report_confusion_matrix(
|
||||
"example_confusion",
|
||||
"ignored",
|
||||
iteration=iteration,
|
||||
@ -79,7 +78,7 @@ Logger.current_logger().report_matrix(
|
||||
|
||||
```python
|
||||
# report confusion matrix with 0,0 is at the top left
|
||||
Logger.current_logger().report_matrix(
|
||||
Logger.current_logger().report_confusion_matrix(
|
||||
"example_confusion_0_0_at_top",
|
||||
"ignored",
|
||||
iteration=iteration,
|
||||
@ -92,8 +91,8 @@ Logger.current_logger().report_matrix(
|
||||
|
||||
## 2D Scatter Plots
|
||||
|
||||
Report 2D scatter plots by calling the [Logger.report_scatter2d](../../references/sdk/logger.md#report_scatter2d)
|
||||
method. Use the `mode` parameter to plot data points with lines (by default), markers, or both lines and markers.
|
||||
Report 2D scatter plots by calling [`Logger.report_scatter2d()`](../../references/sdk/logger.md#report_scatter2d).
|
||||
Use the `mode` parameter to plot data points with lines (by default), markers, or both lines and markers.
|
||||
|
||||
```python
|
||||
scatter2d = np.hstack(
|
||||
|
@ -4,7 +4,7 @@ title: The Experiments Table
|
||||
|
||||
The experiments table is a [customizable](#customizing-the-experiments-table) list of experiments associated with a project. From the experiments
|
||||
table, view experiment details, and work with experiments (reset, clone, enqueue, create [tracking leaderboards](../guides/ui/building_leader_board.md)
|
||||
to monitor experimentation, and more). The experiments table's auto-refresh allows users to continually monitor experiment progress.
|
||||
to monitor experimentation, and more). The experiments table's auto-refresh lets users continually monitor experiment progress.
|
||||
|
||||
View the experiments table in table view <img src="/docs/latest/icons/ico-table-view.svg" alt="Table view" className="icon size-md space-sm" />
|
||||
or in details view <img src="/docs/latest/icons/ico-split-view.svg" alt="Details view" className="icon size-md space-sm" />,
|
||||
|
Loading…
Reference in New Issue
Block a user