mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-03 02:32:49 +00:00
Small edits (#891)
This commit is contained in:
parent
5353bd3cf6
commit
e2cc07c509
@ -22,7 +22,7 @@ but can be overridden by command-line arguments.
|
||||
|**CLEARML_CUDA_VERSION** | Sets the CUDA version to be used |
|
||||
|**CLEARML_CUDNN_VERSION** | Sets the CUDNN version to be used |
|
||||
|**CLEARML_CPU_ONLY** | Force CPU only mode |
|
||||
|**CLEARML_DOCKER_SKIP_GPUS_FLAG** | Skips the GPUs flag (support for docker V18 |
|
||||
|**CLEARML_DOCKER_SKIP_GPUS_FLAG** | Skips the GPUs flag (support for docker V18) |
|
||||
|**CLEARML_AGENT_DOCKER_ARGS_HIDE_ENV** | Hide Docker environment variables containing secrets when printing out the Docker command. When printed, the variable values will be replaced by `********`. See [`agent.hide_docker_command_env_vars`](../configs/clearml_conf.md#hide_docker) |
|
||||
|**CLEARML_AGENT_DISABLE_SSH_MOUNT** | Disables the auto `.ssh` mount into the docker |
|
||||
|**CLEARML_AGENT_FORCE_CODE_DIR**| Allows overriding the remote execution code directory to bypass repository cloning and use a repo already available where the remote agent is running. |
|
||||
|
@ -10,7 +10,7 @@ class to ingest the data.
|
||||
### Downloading the Data
|
||||
Before registering the CIFAR dataset with `clearml-data`, you need to obtain a local copy of it.
|
||||
|
||||
Execute this python script to download the data
|
||||
Execute this python script to download the data:
|
||||
```python
|
||||
from clearml import StorageManager
|
||||
|
||||
|
@ -128,7 +128,7 @@ Use with care! This might introduce security risks by allowing access to keys/se
|
||||
|
||||
---
|
||||
|
||||
**`docker_args_extra_precedes_task`** (*bool*)
|
||||
**`agent.docker_args_extra_precedes_task`** (*bool*)
|
||||
|
||||
* Allow the arguments specified in `agent.extra_docker_arguments` to override task level docker arguments, in the case that
|
||||
the same argument is passed in both. If set to `False`, a task's docker arguments will override the `extra_docker_arguments`.
|
||||
@ -1039,6 +1039,8 @@ and limitations on bucket naming.
|
||||
|
||||
---
|
||||
|
||||
<a id="log_env_var"/>
|
||||
|
||||
**`sdk.development.log_os_environments`** (*[string]*)
|
||||
|
||||
* Log specific environment variables. OS environments are listed in the UI, under an experiment's
|
||||
|
@ -855,7 +855,7 @@ export CLEARML_API_HOST="http://localhost:8008"
|
||||
#### How can I track OS environment variables with experiments? <a id="track-env-vars"></a>
|
||||
|
||||
You can set environment variables to track in an experiment by specifying them in the `sdk.development.log_os_environments`
|
||||
field of the [`clearml.conf`](configs/clearml_conf.md) file:
|
||||
field of the [`clearml.conf`](configs/clearml_conf.md#log_env_var) file:
|
||||
|
||||
```editorconfig
|
||||
log_os_environments: ["AWS_*", "CUDA_VERSION"]
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Workers & Queues
|
||||
title: Workers and Queues
|
||||
---
|
||||
|
||||
Two major components of MLOps/LLMOps are experiment reproducibility, and the ability to scale work to multiple machines. ClearML workers,
|
||||
|
@ -61,7 +61,7 @@ You can also specify environment variables using the `CLEARML_LOG_ENVIRONMENT` e
|
||||
export CLEARML_LOG_ENVIRONMENT=PWD,PYTHONPATH
|
||||
```
|
||||
|
||||
* No environment variables
|
||||
* No environment variables:
|
||||
```
|
||||
export CLEARML_LOG_ENVIRONMENT=
|
||||
```
|
||||
|
@ -50,5 +50,6 @@ The model info panel contains the model details, including:
|
||||
## Console
|
||||
|
||||
All console output during the script's execution appears in the experiment's **CONSOLE** page.
|
||||
|
||||

|
||||
|
||||
|
@ -9,7 +9,7 @@ The example script does the following:
|
||||
* Trains a simple deep neural network on the PyTorch built-in [MNIST](https://pytorch.org/vision/stable/datasets.html#mnist)
|
||||
dataset.
|
||||
* Creates an experiment named `pytorch mnist train` in the `examples` project.
|
||||
* ClearML automatically logs `argparse` command line options, and models (and their snapshots) created by PyTorch
|
||||
* ClearML automatically logs `argparse` command line options, and models (and their snapshots) created by PyTorch.
|
||||
* Additional metrics are logged by calling [`Logger.report_scalar()`](../../../references/sdk/logger.md#report_scalar).
|
||||
|
||||
## Scalars
|
||||
|
@ -11,8 +11,8 @@ The example script does the following:
|
||||
label of each random color is associated with the normal distribution that generated it.
|
||||
* Computes the probability that each color belongs to the class, using three other normal distributions.
|
||||
* Generate PR curves using those probabilities.
|
||||
* Creates a summary per class using [tensorboard.plugins.pr_curve.summary](https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/summary.py),
|
||||
* ClearML automatically captures TensorBoard output, TensorFlow Definitions, and output to the console
|
||||
* Creates a summary per class using [tensorboard.plugins.pr_curve.summary](https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/summary.py).
|
||||
* ClearML automatically captures TensorBoard output, TensorFlow Definitions, and output to the console.
|
||||
|
||||
## Plots
|
||||
|
||||
|
@ -85,7 +85,7 @@ Jupyter Lab URL: http://localhost:8878/?token=ff7e5e8b9e5493a01b1a72530d18181320
|
||||
VSCode server available at http://localhost:8898/
|
||||
```
|
||||
|
||||
Click on the JupyterLab link, which will open the remote session
|
||||
Click on the JupyterLab link, which will open the remote session.
|
||||
|
||||
Now, let's execute some code in the remote session!
|
||||
|
||||
|
@ -3,15 +3,16 @@ title: Media Reporting
|
||||
---
|
||||
|
||||
The [media_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/media_reporting.py) example
|
||||
demonstrates reporting (uploading) images, audio, and video. Use the [Logger.report_media](../../references/sdk/logger.md#report_media)
|
||||
method to upload from:
|
||||
demonstrates reporting (uploading) images, audio, and video. Use [`Logger.report_media()`](../../references/sdk/logger.md#report_media)
|
||||
to upload from:
|
||||
* Local path
|
||||
* BytesIO stream
|
||||
* URL of media already uploaded to some storage
|
||||
|
||||
ClearML uploads media to the bucket specified in the ClearML configuration file or ClearML can be configured for image storage, see [Logger.set_default_upload_destination](../../references/sdk/logger.md#set_default_upload_destination)
|
||||
(storage for [artifacts](../../clearml_sdk/task_sdk.md#setting-upload-destination) is different). Set credentials for storage in the ClearML
|
||||
[configuration file](../../configs/clearml_conf.md).
|
||||
ClearML uploads media to the bucket specified in the ClearML configuration file. You can configure ClearML for image
|
||||
storage using [`Logger.set_default_upload_destination()`](../../references/sdk/logger.md#set_default_upload_destination)
|
||||
(note that [artifact storage](../../clearml_sdk/task_sdk.md#setting-upload-destination) is handled differently).
|
||||
Set the storage credentials in the [clearml.conf file](../../configs/clearml_conf.md#sdk-section).
|
||||
|
||||
ClearML reports media in the **ClearML Web UI** **>** experiment details **>** **DEBUG SAMPLES**
|
||||
tab.
|
||||
@ -21,8 +22,7 @@ project.
|
||||
|
||||
## Reporting (Uploading) Media from a Source by URL
|
||||
|
||||
Report by calling the [Logger.report_media](../../references/sdk/logger.md#report_media)
|
||||
method using the `url` parameter.
|
||||
Report by using the `url` parameter of [`Logger.report_media()`](../../references/sdk/logger.md#report_media):
|
||||
|
||||
```python
|
||||
# report video, an already uploaded video media (url)
|
||||
@ -45,7 +45,7 @@ The reported audio can be viewed in the **DEBUG SAMPLES** tab. Click a thumbnail
|
||||
|
||||
## Reporting (Uploading) Media from a Local File
|
||||
|
||||
Use the `local_path` parameter.
|
||||
Report by using the `local_path` parameter of [`Logger.report_media()`](../../references/sdk/logger.md#report_media):
|
||||
|
||||
```python
|
||||
# report audio, report local media audio file
|
||||
|
@ -3,14 +3,15 @@ title: Text Reporting
|
||||
---
|
||||
|
||||
The [text_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/text_reporting.py) script
|
||||
demonstrates reporting explicit text, by calling the [Logger.report_text](../../references/sdk/logger.md#report_text)
|
||||
method.
|
||||
demonstrates reporting explicit text by calling [`Logger.report_text()`](../../references/sdk/logger.md#report_text).
|
||||
|
||||
ClearML reports these tables in the **ClearML Web UI**, experiment details, **CONSOLE** tab.
|
||||
ClearML reports the text in the **ClearML Web UI**, in the experiment's **CONSOLE** tab.
|
||||
|
||||
When the script runs, it creates an experiment named `text reporting` in the `examples` project.
|
||||
|
||||
# report text
|
||||
Logger.current_logger().report_text("hello, this is plain text")
|
||||
```python
|
||||
# report text
|
||||
Logger.current_logger().report_text("hello, this is plain text")
|
||||
```
|
||||
|
||||

|
@ -16,7 +16,9 @@ example script.
|
||||
|
||||
In the `examples/frameworks/pytorch` directory, run the experiment script:
|
||||
|
||||
python pytorch_mnist.py
|
||||
```commandline
|
||||
python pytorch_mnist.py
|
||||
```
|
||||
|
||||
## Step 2: Clone the Experiment
|
||||
|
||||
@ -42,15 +44,12 @@ To demonstrate tuning, change two hyperparameter values.
|
||||
|
||||
## Step 4: Run a Worker Daemon Listening to a Queue
|
||||
|
||||
To execute the cloned experiment, use a worker that can run a worker daemon listening to a queue.
|
||||
To execute the cloned experiment, use a [ClearML Agent](../../fundamentals/agents_and_queues.md).
|
||||
|
||||
:::note
|
||||
For more information about workers, worker daemons, and queues, see [Agents and queues](../../fundamentals/agents_and_queues.md).
|
||||
:::
|
||||
|
||||
Run the worker daemon on the local development machine.
|
||||
Run the agent on the local development machine:
|
||||
1. Open a terminal session.
|
||||
1. Run the following `clearml-agent` command which runs a worker daemon listening to the `default` queue:
|
||||
|
||||
```
|
||||
clearml-agent daemon --queue default
|
||||
```
|
||||
@ -119,5 +118,4 @@ To compare the original and tuned experiments:
|
||||
|
||||
## Next Steps
|
||||
|
||||
* For more information about editing experiments, see [modify experiments](../../webapp/webapp_exp_tuning.md#modifying-experiments)
|
||||
in the User Interface section.
|
||||
* For more information about editing experiments, see [modifying experiments](../../webapp/webapp_exp_tuning.md#modifying-experiments).
|
@ -132,7 +132,7 @@ parameter's line, and the type, description, and default value appear, if they w
|
||||
|
||||
#### Environment Variables
|
||||
|
||||
If environment variables were listed in the `CLEARML_LOG_ENVIRONMENT` environment variable or the `sdk.development.log_os_environments`
|
||||
If environment variables were listed in the `CLEARML_LOG_ENVIRONMENT` environment variable or the [`sdk.development.log_os_environments`](../configs/clearml_conf.md#log_env_var)
|
||||
field of the `clearml.conf` file, the **Environment** group displays the listed environment variables (see [this FAQ](../faq.md#track-env-vars)).
|
||||
|
||||
:::note
|
||||
|
@ -127,7 +127,7 @@ Add, change, or delete hyperparameters, which are organized in the **ClearML Web
|
||||
* **General** - Parameter dictionaries (from code, connected to the Task by calling [`Task.connect()`](../references/sdk/task.md#connect)).
|
||||
|
||||
* Environment variables - Tracked if variables were listed in the `CLEARML_LOG_ENVIRONMENT` environment variable
|
||||
or the `sdk.development.log_os_environments` field of the `clearml.conf` file (see this [FAQ](../faq.md#track-env-vars)).
|
||||
or the [`sdk.development.log_os_environments`](../configs/clearml_conf.md#log_env_var) field of the `clearml.conf` file (see this [FAQ](../faq.md#track-env-vars)).
|
||||
|
||||
* Custom named parameter groups (see the `name` parameter in [`Task.connect`](../references/sdk/task.md#connect)).
|
||||
|
||||
@ -178,7 +178,7 @@ model in the **MODELS** tab.
|
||||
**To edit a model's configuration or label enumeration:**
|
||||
|
||||
1. Click the model name hyperlink. The model details appear in the **MODELS** tab.
|
||||
1. Edit the model configuration or label enumeration.
|
||||
1. Edit the model configuration or label enumeration:
|
||||
|
||||
* Model configuration - In the **NETWORK** tab **>** Hover and click **EDIT**. **>** CLick **EDIT** or **CLEAR** (to
|
||||
remove the configuration).
|
||||
|
Loading…
Reference in New Issue
Block a user