mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-03 02:32:49 +00:00
Small edits (#886)
This commit is contained in:
parent
1a070e015c
commit
e08cb72fac
@ -20,7 +20,7 @@ the same environment will be used.
|
||||
ClearML does not support environment reuse when using Poetry package manager
|
||||
:::
|
||||
|
||||
To enable virutal environment reuse, modify the `clearml.conf` file and uncomment the `venvs_cache` section.
|
||||
To enable virtual environment reuse, modify the `clearml.conf` file and uncomment the `venvs_cache` section.
|
||||
```
|
||||
venvs_cache: {
|
||||
# maximum number of cached venvs
|
||||
|
@ -201,7 +201,6 @@ These methods can be used on `Model`, `InputModel`, and/or `OutputModel` objects
|
||||
* 3d plots
|
||||
* Scatter plot - [`report_scatter3d`](../references/sdk/model_outputmodel.md#report_scatter3d)
|
||||
* Surface plot - [`report_surface`](../references/sdk/model_outputmodel.md#report_surface)
|
||||
|
||||
|
||||
## SDK Reference
|
||||
|
||||
|
@ -391,7 +391,7 @@ If the `apiserver.conf` file does not exist, create your own in ClearML Server's
|
||||
an alternate folder you configured), and input the modified configuration
|
||||
:::
|
||||
|
||||
See the [Flask-Cors documentation](https://flask-cors.corydolphin.com/en/latest/api.html) for detailed initialization
|
||||
See the [Flask-Cors documentation](https://flask-cors.readthedocs.io/en/latest/api.html) for detailed initialization
|
||||
options.
|
||||
|
||||
### Custom UI Context Menu Actions
|
||||
|
@ -3,7 +3,7 @@ title: PyTorch Ignite ClearMLLogger
|
||||
---
|
||||
|
||||
The `ignite` repository contains the [mnist_with_clearml_logger.py](https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_clearml_logger.py)
|
||||
example script that uses [ignite](https://github.com/pytorch/ignite) and integrates **ClearMLLogger** and its [helper handlers](https://pytorch.org/ignite/generated/ignite.contrib.handlers.clearml_logger.html).
|
||||
example script that uses [ignite](https://github.com/pytorch/ignite) and integrates **ClearMLLogger** and its [helper handlers](https://pytorch.org/ignite/v0.5.0.post2/generated/ignite.handlers.clearml_logger.html).
|
||||
|
||||
PyTorch Ignite supports a `ClearMLLogger` handler to log metrics, text, model / optimizer parameters, plots, and model
|
||||
checkpoints during training and validation.
|
||||
|
@ -196,7 +196,7 @@ object, setting the following optimization parameters:
|
||||
|
||||
## Running as a Service
|
||||
|
||||
The optimization can run as a service, if the `run_as_service` argument is set to `true`. For more information about
|
||||
To run the optimization as a service, set the `run_as_service` argument to `true`. For more information about
|
||||
running as a service, see [Services Mode](../../../clearml_agent/clearml_agent_services_mode.md).
|
||||
|
||||
```python
|
||||
@ -210,7 +210,7 @@ if args['run_as_service']:
|
||||
## Optimize
|
||||
|
||||
The optimizer is ready. Set the report period and [start](../../../references/sdk/hpo_optimization_hyperparameteroptimizer.md#start)
|
||||
it, providing the callback method to report the best performance.
|
||||
it, providing the callback method to report the best performance:
|
||||
|
||||
```python
|
||||
# report every 12 seconds, this is way too often, but we are testing here J
|
||||
|
@ -78,7 +78,6 @@ Integrate ClearML with the following steps:
|
||||
```
|
||||
|
||||
1. Attach the `ClearMLLogger` object to helper handlers to log experiment outputs. Ignite supports the following helper handlers for ClearML:
|
||||
|
||||
* **ClearMLSaver** - Saves input snapshots as ClearML artifacts.
|
||||
* **GradsHistHandler** and **WeightsHistHandler** - Logs the model's gradients and weights respectively as histograms.
|
||||
* **GradsScalarHandler** and **WeightsScalarHandler** - Logs gradients and weights respectively as scalars.
|
||||
@ -122,7 +121,7 @@ Integrate ClearML with the following steps:
|
||||
|
||||
Visualize all the captured information in the experiment's page in ClearML's [WebApp](#webapp).
|
||||
|
||||
For more information, see the [ignite documentation](https://pytorch.org/ignite/generated/ignite.contrib.handlers.clearml_logger.html).
|
||||
For more information, see the [ignite documentation](https://pytorch.org/ignite/v0.5.0.post2/generated/ignite.handlers.clearml_logger.html).
|
||||
|
||||
See code example [here](https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_clearml_logger.py).
|
||||
|
||||
|
@ -34,7 +34,7 @@ This release is not backwards compatible - see notes below on upgrading
|
||||
- Add `Task.force_store_standalone_script()` to force storing standalone script instead of a Git repository reference ([ClearML GitHub issue #340](https://github.com/allegroai/clearml/issues/340))
|
||||
- Add `Logger.set_default_debug_sample_history()` and `Logger.get_default_debug_sample_history()` to allow controlling
|
||||
maximum debug samples programmatically
|
||||
- Add populate now stores function arg types as part of the hyperparemeters
|
||||
- Add populate now stores function arg types as part of the hyperparameters
|
||||
- Add `status_message` argument to `Task.mark_stopped()`
|
||||
- Change `HTTP` driver timeout and retry codes (connection timeout will now trigger a retry)
|
||||
|
||||
|
@ -6,7 +6,7 @@ title: Project Dashboard
|
||||
The ClearML Project Dashboard App is available under the ClearML Pro plan
|
||||
:::
|
||||
|
||||
The Project Dashboard Application provides an overview of a project or workspace's progress. It presents an aggregated
|
||||
The Project Dashboard Application provides an overview of a project's or workspace's progress. It presents an aggregated
|
||||
view of task status and a chosen metric over time, as well as project GPU and worker usage. It also supports alerts/warnings
|
||||
on completed/failed Tasks via Slack integration.
|
||||
|
||||
|
@ -44,7 +44,7 @@ const features = [
|
||||
description: (
|
||||
<>
|
||||
<code>ClearML-Data</code> lets you <b>abstract the Data from your Code</b>.
|
||||
CLI / programmatic interface easily create datasets from anywhere.
|
||||
Easily create datasets from anywhere using the CLI or programmatic interface.
|
||||
ClearML-Data is a fully differentiable solution on top of object-storage / http / NAS layer.
|
||||
<b> We solve your data localization problem, so you can process it anywhere.</b>
|
||||
</>
|
||||
|
Loading…
Reference in New Issue
Block a user