diff --git a/docs/fundamentals/pipelines.md b/docs/fundamentals/pipelines.md index 1f5c11a1..e74dbf4e 100644 --- a/docs/fundamentals/pipelines.md +++ b/docs/fundamentals/pipelines.md @@ -85,10 +85,7 @@ Custom pipelines usually involve cloning template tasks, modifying their paramet them to queues (for execution by [agents](../clearml_agent.md)). It's possible to create custom logic that controls inputs (e.g. overriding hyperparameters and artifacts) and acts upon task outputs. -See examples of custom pipelines: - * [Task Piping](../guides/automation/task_piping.md) - * [Manual Random Parameter Search](../guides/automation/manual_random_param_search_example.md) - +See [Manual Random Parameter Search](../guides/automation/manual_random_param_search_example.md) example of a custom pipeline. ## Pipeline from Function Decorator diff --git a/docs/fundamentals/task.md b/docs/fundamentals/task.md index 145e0a9b..1782b732 100644 --- a/docs/fundamentals/task.md +++ b/docs/fundamentals/task.md @@ -293,7 +293,7 @@ Task.enqueue( ) ``` -See enqueue [example](https://github.com/allegroai/clearml/blob/master/examples/automation/task_piping_example.py). +See enqueue [example](https://github.com/allegroai/clearml/blob/master/examples/automation/programmatic_orchestration.py). ### Advanced Remote Execution diff --git a/docs/guides/automation/task_piping.md b/docs/guides/automation/task_piping.md index 0204397d..78327da4 100644 --- a/docs/guides/automation/task_piping.md +++ b/docs/guides/automation/task_piping.md @@ -1,8 +1,8 @@ --- -title: Task Piping +title: Programmatic Orchestration --- -The [task_piping_example.py](https://github.com/allegroai/clearml/blob/master/examples/automation/task_piping_example.py) +The [programmatic_orchestration.py](https://github.com/allegroai/clearml/blob/master/examples/automation/programmatic_orchestration.py) example demonstrates: 1. Creating an instance of a Task from a template Task. 1. Customizing that instance by changing the value of a parameter @@ -11,10 +11,10 @@ example demonstrates: This example accomplishes a task pipe by doing the following: 1. Creating the template Task which is named `Toy Base Task`. It must be stored in **ClearML Server** before instances of - it can be created. To create it, run another **ClearML** example script, [toy_base_task.py](https://github.com/allegroai/clearml/blob/master/examples/automation/toy_base_task.py). + it can be created. To create it, run another ClearML example script, [toy_base_task.py](https://github.com/allegroai/clearml/blob/master/examples/automation/toy_base_task.py). The template Task has a parameter dictionary, which is connected to the Task: `{'Example_Param': 1}`. -1. Back in `task_piping_example.py`, creating a parameter dictionary, which is connected to the Task by calling [Task.connect](../../references/sdk/task.md#connect) - so that the parameters are logged by **ClearML**. The dictionary contains the name of the parameter from the template +1. Back in `programmatic_orchestration.py`, creating a parameter dictionary, which is connected to the Task by calling [Task.connect](../../references/sdk/task.md#connect) + so that the parameters are logged by ClearML. The dictionary contains the name of the parameter from the template Task that is going to be customized (`Example_Param`), as well as its new value. 1. Creating a Task object referencing the template Task. See [Task.get_task](../../references/sdk/task.md#taskget_task). 1. Creating an instance of the template Task by cloning it.