Fix spacing (#863)

This commit is contained in:
pollfly 2024-06-30 16:49:19 +03:00 committed by GitHub
parent a7371aebee
commit d8963d2ea5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -94,11 +94,11 @@ or with the `clearml-serving` CLI.
clearml-serving --id <service_id> model upload --name "manual sklearn model" --project "serving examples" --framework "scikitlearn" --path ./sklearn-model.pkl clearml-serving --id <service_id> model upload --name "manual sklearn model" --project "serving examples" --framework "scikitlearn" --path ./sklearn-model.pkl
``` ```
You now have a new Model named `manual sklearn model` in the `serving examples` project. The CLI output prints You now have a new Model named `manual sklearn model` in the `serving examples` project. The CLI output prints
the UID of the new model, which you will use to register a new endpoint. the UID of the new model, which you will use to register a new endpoint.
In the [ClearML web UI](../webapp/webapp_overview.md), the new model is listed under the **Models** tab of its project. In the [ClearML web UI](../webapp/webapp_overview.md), the new model is listed under the **Models** tab of its project.
You can also download the model file itself directly from the web UI. You can also download the model file itself directly from the web UI.
1. Register a new endpoint with the new model: 1. Register a new endpoint with the new model:
@ -177,22 +177,26 @@ endpoint `/test_model_sklearn/3/`.
Example: Example:
1. Add two endpoints: 1. Add two endpoints:
```bash
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --version 1 --project "serving examples" ```bash
``` clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --version 1 --project "serving examples"
```bash ```
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --version 2 --project "serving examples"
``` ```bash
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --version 2 --project "serving examples"
```
1. Add Canary endpoint: 1. Add Canary endpoint:
```bash
clearml-serving --id <service_id> model canary --endpoint "test_model_sklearn_canary" --weights 0.1 0.9 --input-endpoints test_model_sklearn/2 test_model_sklearn/1 ```bash
``` clearml-serving --id <service_id> model canary --endpoint "test_model_sklearn_canary" --weights 0.1 0.9 --input-endpoints test_model_sklearn/2 test_model_sklearn/1
```
1. Test Canary endpoint: 1. Test Canary endpoint:
```bash
curl -X POST "http://127.0.0.1:8080/serve/test_model" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'` ```bash
``` curl -X POST "http://127.0.0.1:8080/serve/test_model" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'`
```
### Model Monitoring and Performance Metrics ### Model Monitoring and Performance Metrics