Small edits (#668)

This commit is contained in:
pollfly 2023-09-11 13:33:30 +03:00 committed by GitHub
parent dec2ff2e1e
commit d2dbd30bb4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 53 additions and 62 deletions

View File

@ -387,9 +387,7 @@ ClearML Agent uses the provided default Docker container, which can be overridde
You can set the docker container via the UI:
1. Clone the experiment
2. Set the Docker in the cloned task's **Execution** tab **> Container** section
![Container section](img/webapp_exp_container.png)
3. Enqueue the cloned task
The task will be executed in the container specified in the UI.

View File

@ -334,7 +334,7 @@ Note that in offline mode, any methods that require communicating with the serve
Upload the offline dataset to the ClearML Server using [`Dataset.import_offline_session()`](../references/sdk/dataset.md#datasetimport_offline_session).
```python
Dataset.import_offline_session(session_folder_zip="<path_to_offline_dataset>", upload=True, finalize=True")
Dataset.import_offline_session(session_folder_zip="<path_to_offline_dataset>", upload=True, finalize=True)
```
In the `session_folder_zip` argument, insert the path to the zip folder containing the dataset. To [upload](#uploading-files)

View File

@ -707,7 +707,7 @@ This configuration option is experimental, and has not been vigorously tested, s
**`api.credentials`** (*dict*)
* Dictionary of API credentials.
Alternatively, specify the environment variable `CLEARML_API_ACCESS_KEY / CLEARML_API_SECRET_KEY` to override these keys.
Alternatively, specify the environment variable `CLEARML_API_ACCESS_KEY` / `CLEARML_API_SECRET_KEY` to override these keys.
---

View File

@ -14,6 +14,6 @@ Solutions combined with the clearml-server control plane.
## YouTube Playlist
The first video in the ClearML YouTube **Getting Started** playlist covers these modules in more detail, feel free to check out the video below.
The first video in the ClearML YouTube **Getting Started** playlist covers these modules in more detail. Feel free to check out the video below.
[![Watch the video](https://img.youtube.com/vi/s3k9ntmQmD4/hqdefault.jpg)](https://www.youtube.com/watch?v=s3k9ntmQmD4&list=PLMdIlCuMqSTnoC45ME5_JnsJX0zWqDdlO&index=1)

View File

@ -41,7 +41,7 @@ yields the best performing model for your task!
- You should continue coding while experiments are being executed without interrupting them.
- Stop optimizing your code because your machine struggles, and run it on a beefier machine (cloud / on-prem).
Visualization and comparisons dashboards keep your sanity at bay! In this stage you usually have a docker container with all the binaries
Visualization and comparison dashboards keep your sanity at bay! At this stage you usually have a docker container with all the binaries
that you need.
- [ClearML SDK](../../clearml_sdk/clearml_sdk.md) ensures that all the metrics, parameters and Models are automatically logged and can later be
accessed, [compared](../../webapp/webapp_exp_comparing.md) and [tracked](../../webapp/webapp_exp_track_visual.md).

View File

@ -186,6 +186,6 @@ or check these pages out:
## YouTube Playlist
All these tips and tricks are also covered in ClearML's **Getting Started** series on YouTube, go check it out :)
All these tips and tricks are also covered in ClearML's **Getting Started** series on YouTube. Go check it out :)
[![Watch the video](https://img.youtube.com/vi/kyOfwVg05EM/hqdefault.jpg)](https://www.youtube.com/watch?v=kyOfwVg05EM&list=PLMdIlCuMqSTnoC45ME5_JnsJX0zWqDdlO&index=3)

View File

@ -11,16 +11,16 @@ This example accomplishes the automated random parameter search by doing the fol
1. Creating a template Task named `Keras HP optimization base`. To create it, run the [base_template_keras_simple.py](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
script. This experiment must be executed first, so it will be stored in the server, and then it can be accessed, cloned,
and modified by another Task.
1. Creating a parameter dictionary, which is connected to the Task by calling [Task.connect](../../references/sdk/task.md#connect)
1. Creating a parameter dictionary, which is connected to the Task by calling [`Task.connect()`](../../references/sdk/task.md#connect)
so that the parameters are logged by ClearML.
1. Adding the random search hyperparameters and parameters defining the search (e.g., the experiment name, and number of
times to run the experiment).
1. Creating a Task object referencing the template experiment, `Keras HP optimization base`. See [Task.get_task](../../references/sdk/task.md#taskget_task).
1. Creating a Task object referencing the template experiment, `Keras HP optimization base`. See [`Task.get_task`](../../references/sdk/task.md#taskget_task).
1. For each set of parameters:
1. Cloning the Task object. See [Task.clone](../../references/sdk/task.md#taskclone).
1. Getting the newly cloned Task's parameters. See [Task.get_parameters](../../references/sdk/task.md#get_parameters)
1. Setting the newly cloned Task's parameters to the search values in the parameter dictionary (Step 1). See [Task.set_parameters](../../references/sdk/task.md#set_parameters).
1. Enqueuing the newly cloned Task to execute. See [Task.enqueue](../../references/sdk/task.md#taskenqueue).
1. Cloning the Task object. See [`Task.clone`](../../references/sdk/task.md#taskclone).
1. Getting the newly cloned Task's parameters. See [`Task.get_parameters`](../../references/sdk/task.md#get_parameters).
1. Setting the newly cloned Task's parameters to the search values in the parameter dictionary (Step 1). See [`Task.set_parameters`](../../references/sdk/task.md#set_parameters).
1. Enqueuing the newly cloned Task to execute. See [`Task.enqueue`](../../references/sdk/task.md#taskenqueue).
When the example script runs, it creates an experiment named `Random Hyper-Parameter Search Example` in
the `examples` project. This starts the parameter search, and creates the experiments:

View File

@ -14,15 +14,15 @@ dataset), and reports (uploads) the following to the main Task:
* Scalars - Loss reported as a scalar during training in each Task in a subprocess.
* Hyperparameters - Hyperparameters created in each Task are added to the hyperparameters in the main Task.
Each Task in a subprocess references the main Task by calling [Task.current_task](../../references/sdk/task.md#taskcurrent_task), which always returns
Each Task in a subprocess references the main Task by calling [`Task.current_task()`](../../references/sdk/task.md#taskcurrent_task), which always returns
the main Task.
When the script runs, it creates an experiment named `test torch distributed` in the `examples` project.
## Artifacts
The example uploads a dictionary as an artifact in the main Task by calling the [Task.upload_artifact](../../references/sdk/task.md#upload_artifact)
method on [`Task.current_task`](../../references/sdk/task.md#taskcurrent_task) (the main Task). The dictionary contains the [`dist.rank`](https://pytorch.org/docs/stable/distributed.html#torch.distributed.get_rank)
The example uploads a dictionary as an artifact in the main Task by calling [`Task.upload_artifact()`](../../references/sdk/task.md#upload_artifact)
on [`Task.current_task`](../../references/sdk/task.md#taskcurrent_task) (the main Task). The dictionary contains the [`dist.rank`](https://pytorch.org/docs/stable/distributed.html#torch.distributed.get_rank)
of the subprocess, making each unique.
```python
@ -38,8 +38,8 @@ All of these artifacts appear in the main Task under **ARTIFACTS** **>** **OTHER
## Scalars
Loss is reported to the main Task by calling the [Logger.report_scalar](../../references/sdk/logger.md#report_scalar)
method on `Task.current_task().get_logger`, which is the logger for the main Task. Since `Logger.report_scalar` is called
Loss is reported to the main Task by calling the [`Logger.report_scalar()`](../../references/sdk/logger.md#report_scalar)
on `Task.current_task().get_logger()`, which is the logger for the main Task. Since `Logger.report_scalar` is called
with the same title (`loss`), but a different series name (containing the subprocess' `rank`), all loss scalar series are
logged together.

View File

@ -5,7 +5,7 @@ title: Subprocess
The [subprocess_example.py](https://github.com/allegroai/clearml/blob/master/examples/distributed/subprocess_example.py)
script demonstrates multiple subprocesses interacting and reporting to a main Task. The following happens in the script:
* This script initializes a main Task and spawns subprocesses, each for an instances of that Task.
* Each Task in a subprocess references the main Task by calling [Task.current_task](../../references/sdk/task.md#taskcurrent_task),
* Each Task in a subprocess references the main Task by calling [`Task.current_task()`](../../references/sdk/task.md#taskcurrent_task),
which always returns the main Task.
* The Task in each subprocess reports the following to the main Task:
* Hyperparameters - Additional, different hyperparameters.
@ -15,7 +15,7 @@ which always returns the main Task.
## Hyperparameters
ClearML automatically logs the command line options defined with `argparse`. A parameter dictionary is logged by
connecting it to the Task using a call to the [`Task.connect`](../../references/sdk/task.md#connect) method.
connecting it to the Task using [`Task.connect()`](../../references/sdk/task.md#connect).
```python
additional_parameters = {

View File

@ -38,7 +38,7 @@ The example calls Matplotlib methods to log debug sample images. They appear in
## Hyperparameters
ClearML automatically logs TensorFlow Definitions. A parameter dictionary is logged by connecting it to the Task, by
calling the [`Task.connect`](../../../references/sdk/task.md#connect) method.
calling [`Task.connect()`](../../../references/sdk/task.md#connect).
```python
task_params = {'num_scatter_samples': 60, 'sin_max_value': 20, 'sin_steps': 30}

View File

@ -53,12 +53,11 @@ Text printed to the console for training progress, as well as all other console
## Configuration Objects
In the experiment code, a configuration dictionary is connected to the Task by calling the [`Task.connect`](../../../references/sdk/task.md#connect)
method.
In the experiment code, a configuration dictionary is connected to the Task by calling [`Task.connect()`](../../../references/sdk/task.md#connect).
```python
task.connect_configuration(
name="MyConfig"
name="MyConfig",
configuration={'test': 1337, 'nested': {'key': 'value', 'number': 1}}
)
```

View File

@ -30,7 +30,7 @@ By doubling clicking a thumbnail, you can view a spectrogram plot in the image v
## Hyperparameters
ClearML automatically logs TensorFlow Definitions. A parameter dictionary is logged by connecting it to the Task using
a call to the [Task.connect](../../../../../references/sdk/task.md#connect) method.
[`Task.connect()`](../../../../../references/sdk/task.md#connect).
configuration_dict = {'number_of_epochs': 3, 'batch_size': 4, 'dropout': 0.25, 'base_lr': 0.001}
configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml

View File

@ -14,15 +14,14 @@ The example code preprocesses the downloaded data using Pandas DataFrames, and s
* `Outcome dictionary` - Label enumeration for training.
* `Processed data` - A dictionary containing the paths of the training and validation data.
Each artifact is uploaded by calling the [Task.upload_artifact](../../../../../references/sdk/task.md#upload_artifact)
method. Artifacts appear in the **ARTIFACTS** tab.
Each artifact is uploaded by calling [`Task.upload_artifact()`](../../../../../references/sdk/task.md#upload_artifact).
Artifacts appear in the **ARTIFACTS** tab.
![image](../../../../../img/download_and_preprocessing_02.png)
## Plots (tables)
The example code explicitly reports the data in Pandas DataFrames by calling the [Logger.report_table](../../../../../references/sdk/logger.md#report_table)
method.
The example code explicitly reports the data in Pandas DataFrames by calling [`Logger.report_table()`](../../../../../references/sdk/logger.md#report_table).
For example, the raw data is read into a Pandas DataFrame named `train_set`, and the `head` of the DataFrame is reported.
@ -39,8 +38,7 @@ The tables appear in **PLOTS**.
## Hyperparameters
A parameter dictionary is logged by connecting it to the Task using a call to the [`Task.connect`](../../../../../references/sdk/task.md#connect)
method.
A parameter dictionary is logged by connecting it to the Task using [`Task.connect()`](../../../../../references/sdk/task.md#connect).
```python
logger = task.get_logger()

View File

@ -15,8 +15,7 @@ Accuracy, learning rate, and training loss appear in **SCALARS**, along with the
## Hyperparameters
ClearML automatically logs the command line options, because the example code uses `argparse`. A parameter dictionary
is logged by connecting it to the Task using a call to the [Task.connect](../../../../../references/sdk/task.md#connect)
method.
is logged by connecting it to the Task using [`Task.connect()`](../../../../../references/sdk/task.md#connect).
```python
configuration_dict = {

View File

@ -10,8 +10,7 @@ The example script does the following:
dataset
* Creates an experiment named `pytorch mnist train with abseil` in the `examples` project
* ClearML automatically logs the absl.flags, and the models (and their snapshots) created by PyTorch
* Additional metrics are logged by calling the [Logger.report_scalar](../../../references/sdk/logger.md#report_scalar)
method
* Additional metrics are logged by calling [`Logger.report_scalar()`](../../../references/sdk/logger.md#report_scalar)
## Scalars

View File

@ -16,15 +16,15 @@ The script does the following:
* Hyperparameters - Hyperparameters created in each subprocess Task are added to the main Task's hyperparameters.
Each Task in a subprocess references the main Task by calling [Task.current_task](../../../references/sdk/task.md#taskcurrent_task),
Each Task in a subprocess references the main Task by calling [`Task.current_task()`](../../../references/sdk/task.md#taskcurrent_task),
which always returns the main Task.
1. When the script runs, it creates an experiment named `test torch distributed` in the `examples` project in the **ClearML Web UI**.
### Artifacts
The example uploads a dictionary as an artifact in the main Task by calling the [Task.upload_artifact](../../../references/sdk/task.md#upload_artifact)
method on `Task.current_task` (the main Task). The dictionary contains the `dist.rank` of the subprocess, making each unique.
The example uploads a dictionary as an artifact in the main Task by calling [`Task.upload_artifact()`](../../../references/sdk/task.md#upload_artifact)
on `Task.current_task` (the main Task). The dictionary contains the `dist.rank` of the subprocess, making each unique.
Task.current_task().upload_artifact(
'temp {:02d}'.format(dist.get_rank()), artifact_object={'worker_rank': dist.get_rank()})
@ -35,7 +35,7 @@ All of these artifacts appear in the main Task, **ARTIFACTS** **>** **OTHER**.
## Scalars
Report loss to the main Task by calling the [Logger.report_scalar](../../../references/sdk/logger.md#report_scalar) method
Report loss to the main Task by calling [`Logger.report_scalar()`](../../../references/sdk/logger.md#report_scalar)
on `Task.current_task().get_logger`, which is the logger for the main Task. Since `Logger.report_scalar` is called with the
same title (`loss`), but a different series name (containing the subprocess' `rank`), all loss scalar series are logged together.
@ -50,8 +50,7 @@ The single scalar plot for loss appears in **SCALARS**.
ClearML automatically logs the command line options defined using `argparse`.
A parameter dictionary is logged by connecting it to the Task using a call to the [`Task.connect`](../../../references/sdk/task.md#connect)
method.
A parameter dictionary is logged by connecting it to the Task using [`Task.connect()`](../../../references/sdk/task.md#connect).
```python
param = {'worker_{}_stuff'.format(dist.get_rank()): 'some stuff ' + str(randint(0, 100))}

View File

@ -10,7 +10,7 @@ The example script does the following:
dataset.
* Creates an experiment named `pytorch mnist train` in the `examples` project.
* ClearML automatically logs `argparse` command line options, and models (and their snapshots) created by PyTorch
* Additional metrics are logged by calling the [Logger.report_scalar](../../../references/sdk/logger.md#report_scalar) method.
* Additional metrics are logged by calling [`Logger.report_scalar()`](../../../references/sdk/logger.md#report_scalar).
## Scalars

View File

@ -71,7 +71,7 @@ def job_complete_callback(
Initialize the Task, which will be stored in ClearML Server when the code runs. After the code runs at least once, it
can be [reproduced](../../../webapp/webapp_exp_reproducing.md) and [tuned](../../../webapp/webapp_exp_tuning.md).
We set the Task type to optimizer, and create a new experiment (and Task object) each time the optimizer runs (`reuse_last_task_id=False`).
Set the Task type to `optimizer`, and create a new experiment (and Task object) each time the optimizer runs (`reuse_last_task_id=False`).
When the code runs, it creates an experiment named **Automatic Hyper-Parameter Optimization** that is associated with
the project **Hyper-Parameter Optimization**, which can be seen in the **ClearML Web UI**.

View File

@ -187,7 +187,7 @@ def test(args, model, device, test_loader):
### Log Text
Extend ClearML by explicitly logging text, including errors, warnings, and debugging statements. Use [`Logger.report_text()`](../../references/sdk/logger.md#report_text)
and its argument `level` to report a debugging message.
and its `level` argument to report a debugging message.
```python
logger.report_text(

View File

@ -11,14 +11,13 @@ demonstrates reporting (uploading) images in several formats, including:
* Local files.
ClearML uploads images to the bucket specified in the ClearML [configuration file](../../configs/clearml_conf.md),
or ClearML can be configured for image storage, see [Logger.set_default_upload_destination](../../references/sdk/logger.md#set_default_upload_destination)
or ClearML can be configured for image storage, see [`Logger.set_default_upload_destination()`](../../references/sdk/logger.md#set_default_upload_destination)
(storage for [artifacts](../../clearml_sdk/task_sdk.md#setting-upload-destination) is different). Set credentials for
storage in the ClearML configuration file.
When the script runs, it creates an experiment named `image reporting` in the `examples` project.
Report images using several formats by calling the [Logger.report_image](../../references/sdk/logger.md#report_image)
method:
Report images using several formats by calling [`Logger.report_image()`](../../references/sdk/logger.md#report_image):
```python
# report image as float image

View File

@ -51,7 +51,7 @@ The **Frames** tab displays the contents of the selected dataset version.
View the version's frames as thumbnail previews or in a table. Use the view toggle to switch between thumbnail
view <img src="/docs/latest/icons/ico-grid-view.svg" alt="thumbnail view" className="icon size-md space-sm" /> and
table view <img src="/docs/latest/icons/ico-table-view.svg" alt="table view" className="icon size-md space-sm" /> .
table view <img src="/docs/latest/icons/ico-table-view.svg" alt="table view" className="icon size-md space-sm" />.
Use the thumbnail view for a visual preview of the version's frames. You can increase <img src="/docs/latest/icons/ico-zoom-in.svg" alt="Zoom in" className="icon size-md space-sm" />
and decrease <img src="/docs/latest/icons/ico-zoom-out.svg" alt="Zoom out" className="icon size-md space-sm" /> the size of

View File

@ -88,7 +88,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -86,7 +86,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -98,7 +98,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -87,7 +87,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -84,7 +84,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -107,7 +107,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -90,7 +90,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -100,7 +100,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -114,7 +114,7 @@ following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -162,7 +162,7 @@ the following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
and shuts down instances as needed, according to a resource budget that you set.

View File

@ -107,7 +107,7 @@ the following command on it:
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md) to help you manage cloud workloads in the
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up and
shuts down instances as needed, according to a resource budget that you set.

View File

@ -56,7 +56,7 @@ On the right side of the dataset version panel, view the **VERSION INFO** which
* Number of files modified
* Number of files removed
* Change in size
* Version description - to modify, hover over description and click <img src="/docs/latest/icons/ico-edit.svg" alt="Edit pencil" className="icon size-md space-sm" /> ,
* Version description - to modify, hover over description and click <img src="/docs/latest/icons/ico-edit.svg" alt="Edit pencil" className="icon size-md space-sm" />,
which opens the edit window
<div class="max-w-50">
@ -101,7 +101,7 @@ Access these actions with the context menu by right-clicking a version on the da
|Add Tag |User-defined labels added to versions for grouping and organization. |
|Archive| Move dataset versions to the dataset's archive. |
|Restore|Action available in the archive. Restore a version to the active dataset versions table.|
|Delete| Delete an archived version and its artifacts. This action is available only from the datasets archive |
|Delete| Delete an archived version and its artifacts. This action is available only from the dataset's archive. |
![Dataset actions](../../img/webapp_dataset_actions.png)

View File

@ -322,7 +322,7 @@ These controls allow you to better analyze the results. Hover over a plot, and t
| <img src="/docs/latest/icons/ico-pan.svg" alt="Pan icon" className="icon size-sm space-sm" /> | Pan around plot. Click <img src="/docs/latest/icons/ico-pan.svg" alt="Pan icon" className="icon size-sm space-sm" />, click the plot, and then drag. |
| <img src="/docs/latest/icons/ico-dotted-box.svg" alt="Dotted box icon" className="icon size-sm space-sm" /> | To examine an area, draw a dotted box around it. Click <img src="/docs/latest/icons/ico-dotted-box.svg" alt="Dotted box icon" className="icon size-sm space-sm" /> and then drag. |
| <img src="/docs/latest/icons/ico-dotted-lasso.svg" alt="Dotted lasso icon" className="icon size-sm space-sm" /> | To examine an area, draw a dotted lasso around it. Click <img src="/docs/latest/icons/ico-dotted-lasso.svg" alt="Dotted lasso icon" className="icon size-sm space-sm" /> and then drag. |
| <img src="/docs/latest/icons/ico-zoom.svg" alt="Zoom icon" className="icon size-sm space-sm" /> | Zoom into a section of a plot. Zoom in - Click <img src="/docs/latest/icons/ico-zoom.svg" alt="Zoom icon" className="icon size-sm space-sm" /> and drag over a section of the plot. Reset to original scale - Click <img src="/docs/latest/icons/ico-reset-autoscale.svg" alt="Reset autoscale icon" className="icon size-sm space-sm" /> . |
| <img src="/docs/latest/icons/ico-zoom.svg" alt="Zoom icon" className="icon size-sm space-sm" /> | Zoom into a section of a plot. Zoom in - Click <img src="/docs/latest/icons/ico-zoom.svg" alt="Zoom icon" className="icon size-sm space-sm" /> and drag over a section of the plot. Reset to original scale - Click <img src="/docs/latest/icons/ico-reset-autoscale.svg" alt="Reset autoscale icon" className="icon size-sm space-sm" />. |
| <img src="/docs/latest/icons/ico-zoom-in-square.svg" alt="Zoom-in icon" className="icon size-sm space-sm" /> | Zoom in. |
| <img src="/docs/latest/icons/ico-zoom-out-square.svg" alt="Zoom-out icon" className="icon size-sm space-sm" /> | Zoom out. |
| <img src="/docs/latest/icons/ico-reset-autoscale.svg" alt="Reset autoscale icon" className="icon size-sm space-sm" /> | Reset to autoscale after zooming ( <img src="/docs/latest/icons/ico-zoom.svg" alt="Zoom icon" className="icon size-sm space-sm" />, <img src="/docs/latest/icons/ico-zoom-in-square.svg" alt="Zoom-in icon" className="icon size-sm space-sm" />, or <img src="/docs/latest/icons/ico-zoom-out-square.svg" alt="Zoom-out icon" className="icon size-sm space-sm" />). |