Add OutputModel examples (#178)

This commit is contained in:
pollfly 2022-02-01 10:45:05 +02:00 committed by GitHub
parent 020cf9a819
commit c73f86954c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 138 additions and 59 deletions

View File

@ -1,76 +1,56 @@
---
title: Configuring Models
title: Model Reporting
---
The [model_config.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/model_config.py) example demonstrates
configuring a model and defining label enumeration. Connect the configuration and label enumeration to a Task and, once
connected, **ClearML** tracks any changes to them. When **ClearML** stores a model in any framework, **ClearML** stores
the configuration and label enumeration with it.
The [model_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/model_reporting.py) example
demonstrates logging a model using the [OutputModel](../../references/sdk/model_outputmodel.md)
class.
When the script runs, it creates an experiment named `Model configuration example`, which is associated with the `examples` project.
The example does the following:
* Creates a task named `Model reporting example` in the `examples` project.
* Uses an OutputModel object to register a previously trained model and log its label enumeration.
## Configuring Models
### Using a Configuration File
Connect a configuration file to a Task by calling the [Task.connect_configuration](../../references/sdk/task.md#connect_configuration)
method with the file location and the configuration object's name as arguments. In this example, we connect a JSON file and a YAML file
to a Task.
## Initialization
An OutputModel object is instantiated for the task.
```python
config_file_json = 'data_samples/sample.json'
task.connect_configuration(name="json file", configuration=config_file_json)
config_file_yaml = 'data_samples/config_yaml.yaml'
task.connect_configuration(configuration=config_file_yaml, name="yaml file")
from clearml import Task, OutputModel
# Connecting ClearML with the current process,
task = Task.init(project_name="examples", task_name="Model logging example")
# Create output model and connect it to the task
output_model = OutputModel(task=task)
```
The configuration is logged to the ClearML Task and can be viewed in the **ClearML Web UI** experiment details **>** **CONFIGURATION** tab **>** **CONFIGURATION OBJECTS**
section. The contents of the JSON file will appear in the **json file** object, and the contents of the YAML file will appear
in the **yaml file** object, as specified in the `name` parameter of the `connect_configuration` method.
![image](../../img/examples_reporting_config.png)
### Configuration Dictionary
Connect a configuration dictionary to a Task by creating a dictionary, and then calling the [Task.connect_configuration](../../references/sdk/task.md#connect_configuration)
method with the dictionary and the object name as arguments. After the configuration is connected, **ClearML** tracks changes to it.
```python
model_config_dict = {
'CHANGE ME': 13.37,
'dict': {'sub_value': 'string', 'sub_integer': 11},
'list_of_ints': [1, 2, 3, 4],
}
model_config_dict = task.connect_configuration(
name='dictionary',
configuration=model_config_dict
)
# Update the dictionary after connecting it, and the changes will be tracked as well.
model_config_dict['new value'] = 10
model_config_dict['CHANGE ME'] *= model_config_dict['new value']
```
The configurations are connected to the ClearML Task and can be viewed in the **ClearML Web UI** **>** experiment details **>** **CONFIGURATION** tab **>**
**CONFIGURATION OBJECTS** area **>** **dictionary** object.
![image](../../img/examples_reporting_config_3.png)
## Label Enumeration
Connect a label enumeration dictionary by creating the dictionary, and then calling the [Task.connect_label_enumeration](../../references/sdk/task.md#connect_label_enumeration)
method with the dictionary as an argument.
Set the models label enumeration using the [`OutputModel.update_labels`](../../references/sdk/model_outputmodel.md#update_labels)
method.
```python
# store the label enumeration of the training model
labels = {'background': 0, 'cat': 1, 'dog': 2}
task.connect_label_enumeration(labels)
labels = {"background": 0, "cat": 1, "dog": 2}
output_model.update_labels(labels)
```
Log a local model file.
## Registering Models
Register a previously trained model using the [`OutputModel.update_weights`](../../references/sdk/model_outputmodel.md#update_weights)
method. The example code uses a model stored in S3.
```python
OutputModel().update_weights('my_best_model.bin')
```
# Manually log a model file, which will have the labels connected above
output_model.update_weights(register_uri=model_url)
```
The model which is stored contains the model configuration and the label enumeration.
## WebApp
The model appears in the tasks **ARTIFACTS** tab.
![Task artifacts](../../img/examples_model_logging_artifacts.png)
Clicking on the model name takes you to the [models page](../../webapp/webapp_model_viewing.md), where you can view the
models details and access the model.
The models **LABELS** tab displays its label enumeration.
![Model Labels tab](../../img/examples_model_logging_labels.png)
![image](../../img/examples_reporting_config_2.png)

View File

@ -0,0 +1,99 @@
---
title: Model Updating
---
The [model_update_pytorch.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/model_update_pytorch.py)
example demonstrates training a model and logging it using the [OutputModel](../../references/sdk/model_outputmodel.md)
class.
The example does the following:
* Creates a task named `Model update pytorch` in the `examples` project.
* Trains a neural network on the CIFAR10 dataset for image classification.
* Uses an OutputModel object to log the model, its label enumeration and configuration dictionary.
:::note Disabling automatic framework logging
This example disables the default automatic capturing of PyTorch outputs, to demonstrate how to manually control what is
logged from PyTorch. See [this FAQ](../../faq.md#controlling_logging) for more information.
:::
## Initialization
An OutputModel object is instantiated for the task.
```python
from clearml import Task, OutputModel
task = Task.init(
project_name="examples",
task_name="Model update pytorch",
auto_connect_frameworks={"pytorch": False}
)
output_model = OutputModel(task=task)
```
## Label Enumeration
The label enumeration dictionary is logged using the [`Task.connect_label_enumeration`](../../references/sdk/task.md#connect_label_enumeration)
method which will update the tasks resulting model information. The current running task is accessed using the
[`Task.current_task`](../../references/sdk/task.md#taskcurrent_task) class method.
```python
# store the label enumeration of the training model
classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck",)
enumeration = {k: v for v, k in enumerate(classes, 1)}
Task.current_task().connect_label_enumeration(enumeration)
```
:::note Directly Setting Model Enumeration
You can set a models label enumeration directly using the [`OutputModel.update_labels`](../../references/sdk/model_outputmodel.md#update_labels)
method
:::
## Model Configuration
Add a configuration dictionary to the model using the [`OutputModel.update_design`](../../references/sdk/model_outputmodel.md#update_design)
method.
```python
model_config_dict = {
"list_of_ints": [1, 2, 3, 4],
"dict": {
"sub_value": "string",
"sub_integer": 11
},
"value": 13.37
}
model.update_design(config_dict=model_config_dict)
```
## Updating Models
To update a model, use the [OutputModel.update_weights](../../references/sdk/model_outputmodel.md#update_weights) method.
This uploads the model to the set storage destination (see [Setting Upload Destination](../../fundamentals/artifacts.md#setting-upload-destination)),
and registers that location to the task as the output model.
```python
# CONDITION depicts a custom condition for when to save the model. The model is saved and then updated in ClearML
CONDITION = True
if CONDITION:
torch.save(net.state_dict(), PATH)
model.update_weights(weights_filename=PATH)
```
## WebApp
The model appears in the tasks **ARTIFACTS** tab.
![Task artifacts](../../img/examples_model_update_artifacts.png)
Clicking on the model name takes you to the [models page](../../webapp/webapp_model_viewing.md), where you can view the
models details and access the model.
![Model page](../../img/examples_model_update_model.png)
The models **NETWORK** tab displays its configuration.
![Model network tab](../../img/examples_model_update_network.png)
The models **LABELS** tab displays its label enumeration.
![Model labels](../../img/examples_model_update_labels.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -106,7 +106,7 @@ module.exports = {
{'Reporting': ['guides/reporting/explicit_reporting','guides/reporting/3d_plots_reporting', 'guides/reporting/artifacts', 'guides/reporting/using_artifacts', 'guides/reporting/clearml_logging_example', 'guides/reporting/html_reporting',
'guides/reporting/hyper_parameters', 'guides/reporting/image_reporting', 'guides/reporting/manual_matplotlib_reporting', 'guides/reporting/media_reporting',
'guides/reporting/model_config', 'guides/reporting/pandas_reporting', 'guides/reporting/plotly_reporting',
'guides/reporting/model_config', 'guides/reporting/model_updating', 'guides/reporting/pandas_reporting', 'guides/reporting/plotly_reporting',
'guides/reporting/scalar_reporting', 'guides/reporting/scatter_hist_confusion_mat_reporting', 'guides/reporting/text_reporting']},
{'Services': ['guides/services/aws_autoscaler', 'guides/services/cleanup_service', 'guides/services/slack_alerts']},
{'Storage': ['guides/storage/examples_storagehelper']},