mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-03 21:04:46 +00:00
Add OutputModel examples (#178)
This commit is contained in:
parent
020cf9a819
commit
c73f86954c
@ -1,76 +1,56 @@
|
||||
---
|
||||
title: Configuring Models
|
||||
title: Model Reporting
|
||||
---
|
||||
|
||||
The [model_config.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/model_config.py) example demonstrates
|
||||
configuring a model and defining label enumeration. Connect the configuration and label enumeration to a Task and, once
|
||||
connected, **ClearML** tracks any changes to them. When **ClearML** stores a model in any framework, **ClearML** stores
|
||||
the configuration and label enumeration with it.
|
||||
The [model_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/model_reporting.py) example
|
||||
demonstrates logging a model using the [OutputModel](../../references/sdk/model_outputmodel.md)
|
||||
class.
|
||||
|
||||
When the script runs, it creates an experiment named `Model configuration example`, which is associated with the `examples` project.
|
||||
The example does the following:
|
||||
* Creates a task named `Model reporting example` in the `examples` project.
|
||||
* Uses an OutputModel object to register a previously trained model and log its label enumeration.
|
||||
|
||||
## Configuring Models
|
||||
|
||||
### Using a Configuration File
|
||||
|
||||
Connect a configuration file to a Task by calling the [Task.connect_configuration](../../references/sdk/task.md#connect_configuration)
|
||||
method with the file location and the configuration object's name as arguments. In this example, we connect a JSON file and a YAML file
|
||||
to a Task.
|
||||
## Initialization
|
||||
An OutputModel object is instantiated for the task.
|
||||
|
||||
```python
|
||||
config_file_json = 'data_samples/sample.json'
|
||||
task.connect_configuration(name="json file", configuration=config_file_json)
|
||||
config_file_yaml = 'data_samples/config_yaml.yaml'
|
||||
task.connect_configuration(configuration=config_file_yaml, name="yaml file")
|
||||
from clearml import Task, OutputModel
|
||||
|
||||
# Connecting ClearML with the current process,
|
||||
task = Task.init(project_name="examples", task_name="Model logging example")
|
||||
|
||||
# Create output model and connect it to the task
|
||||
output_model = OutputModel(task=task)
|
||||
```
|
||||
|
||||
The configuration is logged to the ClearML Task and can be viewed in the **ClearML Web UI** experiment details **>** **CONFIGURATION** tab **>** **CONFIGURATION OBJECTS**
|
||||
section. The contents of the JSON file will appear in the **json file** object, and the contents of the YAML file will appear
|
||||
in the **yaml file** object, as specified in the `name` parameter of the `connect_configuration` method.
|
||||
|
||||

|
||||
|
||||
### Configuration Dictionary
|
||||
|
||||
Connect a configuration dictionary to a Task by creating a dictionary, and then calling the [Task.connect_configuration](../../references/sdk/task.md#connect_configuration)
|
||||
method with the dictionary and the object name as arguments. After the configuration is connected, **ClearML** tracks changes to it.
|
||||
|
||||
```python
|
||||
model_config_dict = {
|
||||
'CHANGE ME': 13.37,
|
||||
'dict': {'sub_value': 'string', 'sub_integer': 11},
|
||||
'list_of_ints': [1, 2, 3, 4],
|
||||
}
|
||||
model_config_dict = task.connect_configuration(
|
||||
name='dictionary',
|
||||
configuration=model_config_dict
|
||||
)
|
||||
|
||||
# Update the dictionary after connecting it, and the changes will be tracked as well.
|
||||
model_config_dict['new value'] = 10
|
||||
model_config_dict['CHANGE ME'] *= model_config_dict['new value']
|
||||
```
|
||||
The configurations are connected to the ClearML Task and can be viewed in the **ClearML Web UI** **>** experiment details **>** **CONFIGURATION** tab **>**
|
||||
**CONFIGURATION OBJECTS** area **>** **dictionary** object.
|
||||
|
||||

|
||||
|
||||
## Label Enumeration
|
||||
|
||||
Connect a label enumeration dictionary by creating the dictionary, and then calling the [Task.connect_label_enumeration](../../references/sdk/task.md#connect_label_enumeration)
|
||||
method with the dictionary as an argument.
|
||||
Set the model’s label enumeration using the [`OutputModel.update_labels`](../../references/sdk/model_outputmodel.md#update_labels)
|
||||
method.
|
||||
|
||||
```python
|
||||
# store the label enumeration of the training model
|
||||
labels = {'background': 0, 'cat': 1, 'dog': 2}
|
||||
task.connect_label_enumeration(labels)
|
||||
labels = {"background": 0, "cat": 1, "dog": 2}
|
||||
output_model.update_labels(labels)
|
||||
```
|
||||
|
||||
Log a local model file.
|
||||
## Registering Models
|
||||
Register a previously trained model using the [`OutputModel.update_weights`](../../references/sdk/model_outputmodel.md#update_weights)
|
||||
method. The example code uses a model stored in S3.
|
||||
|
||||
```python
|
||||
OutputModel().update_weights('my_best_model.bin')
|
||||
```
|
||||
# Manually log a model file, which will have the labels connected above
|
||||
output_model.update_weights(register_uri=model_url)
|
||||
```
|
||||
|
||||
The model which is stored contains the model configuration and the label enumeration.
|
||||
## WebApp
|
||||
The model appears in the task’s **ARTIFACTS** tab.
|
||||
|
||||

|
||||
|
||||
Clicking on the model name takes you to the [model’s page](../../webapp/webapp_model_viewing.md), where you can view the
|
||||
model’s details and access the model.
|
||||
|
||||
The model’s **LABELS** tab displays its label enumeration.
|
||||
|
||||

|
||||
|
||||

|
||||
|
99
docs/guides/reporting/model_updating.md
Normal file
99
docs/guides/reporting/model_updating.md
Normal file
@ -0,0 +1,99 @@
|
||||
---
|
||||
title: Model Updating
|
||||
---
|
||||
|
||||
The [model_update_pytorch.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/model_update_pytorch.py)
|
||||
example demonstrates training a model and logging it using the [OutputModel](../../references/sdk/model_outputmodel.md)
|
||||
class.
|
||||
|
||||
The example does the following:
|
||||
* Creates a task named `Model update pytorch` in the `examples` project.
|
||||
* Trains a neural network on the CIFAR10 dataset for image classification.
|
||||
* Uses an OutputModel object to log the model, its label enumeration and configuration dictionary.
|
||||
|
||||
:::note Disabling automatic framework logging
|
||||
This example disables the default automatic capturing of PyTorch outputs, to demonstrate how to manually control what is
|
||||
logged from PyTorch. See [this FAQ](../../faq.md#controlling_logging) for more information.
|
||||
:::
|
||||
|
||||
## Initialization
|
||||
An OutputModel object is instantiated for the task.
|
||||
|
||||
```python
|
||||
from clearml import Task, OutputModel
|
||||
|
||||
task = Task.init(
|
||||
project_name="examples",
|
||||
task_name="Model update pytorch",
|
||||
auto_connect_frameworks={"pytorch": False}
|
||||
)
|
||||
|
||||
output_model = OutputModel(task=task)
|
||||
```
|
||||
|
||||
## Label Enumeration
|
||||
The label enumeration dictionary is logged using the [`Task.connect_label_enumeration`](../../references/sdk/task.md#connect_label_enumeration)
|
||||
method which will update the task’s resulting model information. The current running task is accessed using the
|
||||
[`Task.current_task`](../../references/sdk/task.md#taskcurrent_task) class method.
|
||||
|
||||
```python
|
||||
# store the label enumeration of the training model
|
||||
classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck",)
|
||||
enumeration = {k: v for v, k in enumerate(classes, 1)}
|
||||
Task.current_task().connect_label_enumeration(enumeration)
|
||||
```
|
||||
|
||||
:::note Directly Setting Model Enumeration
|
||||
You can set a model’s label enumeration directly using the [`OutputModel.update_labels`](../../references/sdk/model_outputmodel.md#update_labels)
|
||||
method
|
||||
:::
|
||||
|
||||
## Model Configuration
|
||||
|
||||
Add a configuration dictionary to the model using the [`OutputModel.update_design`](../../references/sdk/model_outputmodel.md#update_design)
|
||||
method.
|
||||
|
||||
```python
|
||||
model_config_dict = {
|
||||
"list_of_ints": [1, 2, 3, 4],
|
||||
"dict": {
|
||||
"sub_value": "string",
|
||||
"sub_integer": 11
|
||||
},
|
||||
"value": 13.37
|
||||
}
|
||||
|
||||
model.update_design(config_dict=model_config_dict)
|
||||
```
|
||||
|
||||
## Updating Models
|
||||
To update a model, use the [OutputModel.update_weights](../../references/sdk/model_outputmodel.md#update_weights) method.
|
||||
This uploads the model to the set storage destination (see [Setting Upload Destination](../../fundamentals/artifacts.md#setting-upload-destination)),
|
||||
and registers that location to the task as the output model.
|
||||
|
||||
```python
|
||||
# CONDITION depicts a custom condition for when to save the model. The model is saved and then updated in ClearML
|
||||
CONDITION = True
|
||||
|
||||
if CONDITION:
|
||||
torch.save(net.state_dict(), PATH)
|
||||
model.update_weights(weights_filename=PATH)
|
||||
```
|
||||
|
||||
## WebApp
|
||||
The model appears in the task’s **ARTIFACTS** tab.
|
||||
|
||||

|
||||
|
||||
Clicking on the model name takes you to the [model’s page](../../webapp/webapp_model_viewing.md), where you can view the
|
||||
model’s details and access the model.
|
||||
|
||||

|
||||
|
||||
The model’s **NETWORK** tab displays its configuration.
|
||||
|
||||

|
||||
|
||||
The model’s **LABELS** tab displays its label enumeration.
|
||||
|
||||

|
BIN
docs/img/examples_model_logging_artifacts.png
Normal file
BIN
docs/img/examples_model_logging_artifacts.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
BIN
docs/img/examples_model_logging_labels.png
Normal file
BIN
docs/img/examples_model_logging_labels.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
BIN
docs/img/examples_model_update_artifacts.png
Normal file
BIN
docs/img/examples_model_update_artifacts.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 36 KiB |
BIN
docs/img/examples_model_update_labels.png
Normal file
BIN
docs/img/examples_model_update_labels.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 25 KiB |
BIN
docs/img/examples_model_update_model.png
Normal file
BIN
docs/img/examples_model_update_model.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 49 KiB |
BIN
docs/img/examples_model_update_network.png
Normal file
BIN
docs/img/examples_model_update_network.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
@ -106,7 +106,7 @@ module.exports = {
|
||||
|
||||
{'Reporting': ['guides/reporting/explicit_reporting','guides/reporting/3d_plots_reporting', 'guides/reporting/artifacts', 'guides/reporting/using_artifacts', 'guides/reporting/clearml_logging_example', 'guides/reporting/html_reporting',
|
||||
'guides/reporting/hyper_parameters', 'guides/reporting/image_reporting', 'guides/reporting/manual_matplotlib_reporting', 'guides/reporting/media_reporting',
|
||||
'guides/reporting/model_config', 'guides/reporting/pandas_reporting', 'guides/reporting/plotly_reporting',
|
||||
'guides/reporting/model_config', 'guides/reporting/model_updating', 'guides/reporting/pandas_reporting', 'guides/reporting/plotly_reporting',
|
||||
'guides/reporting/scalar_reporting', 'guides/reporting/scatter_hist_confusion_mat_reporting', 'guides/reporting/text_reporting']},
|
||||
{'Services': ['guides/services/aws_autoscaler', 'guides/services/cleanup_service', 'guides/services/slack_alerts']},
|
||||
{'Storage': ['guides/storage/examples_storagehelper']},
|
||||
|
Loading…
Reference in New Issue
Block a user