mirror of
				https://github.com/clearml/clearml-docs
				synced 2025-06-26 18:17:44 +00:00 
			
		
		
		
	Add LightningCLI information (#719)
This commit is contained in:
		
							parent
							
								
									346d1fc558
								
							
						
					
					
						commit
						c54ab774f3
					
				
							
								
								
									
										
											BIN
										
									
								
								docs/img/integrations_lightningcli_params.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								docs/img/integrations_lightningcli_params.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 99 KiB  | 
@ -8,7 +8,8 @@ instructions.
 | 
				
			|||||||
:::
 | 
					:::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
[PyTorch Lightning](https://github.com/Lightning-AI/lightning) is a framework that simplifies the process of training and deploying PyTorch models. ClearML seamlessly 
 | 
					[PyTorch Lightning](https://github.com/Lightning-AI/lightning) is a framework that simplifies the process of training and deploying PyTorch models. ClearML seamlessly 
 | 
				
			||||||
integrates with PyTorch Lightning, automatically logging PyTorch models and more. 
 | 
					integrates with PyTorch Lightning, automatically logging PyTorch models, parameters supplied by [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html), 
 | 
				
			||||||
 | 
					and more. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
All you have to do is simply add two lines of code to your PyTorch Lightning script:
 | 
					All you have to do is simply add two lines of code to your PyTorch Lightning script:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -21,6 +22,7 @@ And that’s it! This creates a [ClearML Task](../fundamentals/task.md) which ca
 | 
				
			|||||||
* Source code and uncommitted changes
 | 
					* Source code and uncommitted changes
 | 
				
			||||||
* Installed packages
 | 
					* Installed packages
 | 
				
			||||||
* PyTorch Models
 | 
					* PyTorch Models
 | 
				
			||||||
 | 
					* Parameters supplied by [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html) (when class is instantiated in script)
 | 
				
			||||||
* [TensorBoard](https://www.tensorflow.org/tensorboard) outputs
 | 
					* [TensorBoard](https://www.tensorflow.org/tensorboard) outputs
 | 
				
			||||||
* Console output
 | 
					* Console output
 | 
				
			||||||
* General details such as machine details, runtime, creation date etc.
 | 
					* General details such as machine details, runtime, creation date etc.
 | 
				
			||||||
@ -28,12 +30,15 @@ And that’s it! This creates a [ClearML Task](../fundamentals/task.md) which ca
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
You can view all the task details in the [WebApp](../webapp/webapp_overview.md). 
 | 
					You can view all the task details in the [WebApp](../webapp/webapp_overview.md). 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
See an example of PyTorch Lightning and ClearML in action [here](../guides/frameworks/pytorch_lightning/pytorch_lightning_example.md). 
 | 
					See an example of PyTorch Lightning and ClearML in action [here](../guides/frameworks/pytorch_lightning/pytorch_lightning_example.md). 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Automatic Logging Control 
 | 
					## Automatic Logging Control 
 | 
				
			||||||
By default, when ClearML is integrated into your script, it automatically captures information from supported frameworks. 
 | 
					By default, when ClearML is integrated into your script, it automatically captures information from supported frameworks, 
 | 
				
			||||||
But, you may want to have more control over what your experiment logs.
 | 
					and parameters from supported argument parsers. But, you may want to have more control over what your experiment logs.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Frameworks
 | 
				
			||||||
To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit). 
 | 
					To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit). 
 | 
				
			||||||
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged 
 | 
					Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged 
 | 
				
			||||||
frameworks, input a dictionary, with framework-boolean pairs.
 | 
					frameworks, input a dictionary, with framework-boolean pairs.
 | 
				
			||||||
@ -61,6 +66,30 @@ unspecified frameworks' values default to true so all their models are automatic
 | 
				
			|||||||
auto_connect_frameworks={'pytorch' : '*.pt'}
 | 
					auto_connect_frameworks={'pytorch' : '*.pt'}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Argument Parsers
 | 
				
			||||||
 | 
					To control a task's logging of parameters from argument parsers, use the `auto_connect_arg_parser` parameter of [`Task.init()`](../references/sdk/task.md#taskinit). 
 | 
				
			||||||
 | 
					Completely disable all automatic logging by setting the parameter to `False` (this includes disabling logging of `LightningCLI` parameters). 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					auto_connect_arg_parser=False
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For finer grained control of logged parameters, input a dictionary with parameter-boolean pairs. The `False` value 
 | 
				
			||||||
 | 
					excludes the specified parameter. Unspecified parameters default to `True`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For example, the following code will not log the `Example_1` parameter, but will log all other arguments.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					auto_connect_arg_parser={"Example_1": False}
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To exclude all unspecified parameters, set the `*` key to `False`. For example, the following code will log **only** the 
 | 
				
			||||||
 | 
					`Example_2` parameter.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					auto_connect_arg_parser={"Example_2": True, "*": False}
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Manual Logging
 | 
					## Manual Logging
 | 
				
			||||||
To augment its automatic logging, ClearML also provides an explicit logging interface.
 | 
					To augment its automatic logging, ClearML also provides an explicit logging interface.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -114,4 +143,8 @@ re-run it on a remote machine.
 | 
				
			|||||||
task.execute_remotely(queue_name='default', exit_process=True)
 | 
					task.execute_remotely(queue_name='default', exit_process=True)
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Hyperparameter Optimization
 | 
				
			||||||
 | 
					Use ClearML’s [`HyperParameterOptimizer`](../references/sdk/hpo_optimization_hyperparameteroptimizer.md) class to find 
 | 
				
			||||||
 | 
					the hyperparameter values that yield the best performing models. See [Hyperparameter Optimization](../fundamentals/hpo.md) 
 | 
				
			||||||
 | 
					for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user