mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-02 12:21:08 +00:00
Small edits (#594)
This commit is contained in:
parent
b2849c423d
commit
c256f46993
@ -9,7 +9,7 @@ See [Hyper-Datasets](../hyperdatasets/overview.md) for ClearML's advanced querya
|
||||
|
||||
Datasets can be created, modified, and managed with ClearML Data's python interface. You can upload your dataset to any
|
||||
storage service of your choice (S3 / GS / Azure / Network Storage) by setting the dataset’s upload destination (see
|
||||
[`output_url`](#uploading-files) parameter of `Dataset.upload` method). Once you have uploaded your dataset, you can access
|
||||
[`output_url`](#uploading-files) parameter of `Dataset.upload()`). Once you have uploaded your dataset, you can access
|
||||
it from any machine.
|
||||
|
||||
The following page provides an overview for using the most basic methods of the `Dataset` class. See the [Dataset reference page](../references/sdk/dataset.md)
|
||||
|
@ -520,8 +520,8 @@ the `offline_mode` argument to `True`
|
||||
* Before running a task, set `CLEARML_OFFLINE_MODE=1`
|
||||
|
||||
:::caution
|
||||
Offline mode only works with tasks created using `Task.init` and not with those created
|
||||
using the `Task.create` method.
|
||||
Offline mode only works with tasks created using [`Task.init()`](../references/sdk/task.md#taskinit) and not with those created
|
||||
using [`Task.create()`](../references/sdk/task.md#taskcreate).
|
||||
:::
|
||||
|
||||
All the information captured by the Task is saved locally. Once the task script finishes execution, it's zipped.
|
||||
|
@ -933,7 +933,7 @@ and limitations on bucket naming.
|
||||
**`sdk.development.default_output_uri`** (*string*) <a class="tr_top_negative" id="config_default_output_uri"></a>
|
||||
|
||||
* The default output destination for model checkpoints (snapshots) and artifacts. If the `output_uri` parameter is not provided
|
||||
when calling the `Task.init` method, then use the destination in `default_output_uri`.
|
||||
when calling [`Task.init()`](../references/sdk/task.md#taskinit), then use the destination in `default_output_uri`.
|
||||
|
||||
|
||||
---
|
||||
|
@ -55,7 +55,7 @@ For example, a domain is called `mydomain.com`, and a subdomain named `clearml.m
|
||||
* `api.clearml.mydomain.com` (API server)
|
||||
* `files.clearml.mydomain.com` (file server)
|
||||
|
||||
Accessing the **ClearML Web UI** with `app.clearml.mydomain.com` will automatically send API requests to `api.clearml.mydomain.com`.
|
||||
Accessing the [ClearML Web UI](../webapp/webapp_overview.md) with `app.clearml.mydomain.com` will automatically send API requests to `api.clearml.mydomain.com`.
|
||||
|
||||
## ClearML Server Feature Configurations
|
||||
|
||||
|
@ -509,8 +509,8 @@ the `offline_mode` argument to `True`
|
||||
* Before running a task, set `CLEARML_OFFLINE_MODE=1`
|
||||
|
||||
:::caution
|
||||
Offline mode only works with tasks created using `Task.init` and not with those created
|
||||
using the `Task.create` method.
|
||||
Offline mode only works with tasks created using [`Task.init()`](references/sdk/task.md#taskinit) and not with those created
|
||||
using [`Task.create()`](references/sdk/task.md#taskcreate).
|
||||
:::
|
||||
|
||||
The task's console output displays the task ID and a path to the folder with the session's captured information:
|
||||
|
@ -18,7 +18,7 @@ If you are afraid of clutter, use the archive option, and set up your own [clean
|
||||
|
||||
## Clone Tasks
|
||||
Define a ClearML Task with one of the following options:
|
||||
- Run the actual code with `Task.init` call. This will create and auto-populate the Task in CleaML (including Git Repo / Python Packages / Command line etc.).
|
||||
- Run the actual code with the `Task.init()` call. This will create and auto-populate the Task in CleaML (including Git Repo / Python Packages / Command line etc.).
|
||||
- Register local / remote code repository with `clearml-task`. See [details](../../apps/clearml_task.md).
|
||||
|
||||
Once you have a Task in ClearML, you can clone and edit its definitions in the UI, then launch it on one of your nodes with [ClearML Agent](../../clearml_agent.md).
|
||||
|
@ -23,8 +23,8 @@ the `offline_mode` argument to `True`
|
||||
* Before running a task, set `CLEARML_OFFLINE_MODE=1`
|
||||
|
||||
:::caution
|
||||
Offline mode only works with tasks created using `Task.init` and not with those created
|
||||
using the `Task.create` method.
|
||||
Offline mode only works with tasks created using [`Task.init()`](../references/sdk/task.md#taskinit) and not with those created
|
||||
using [`Task.create()`](../references/sdk/task.md#taskcreate).
|
||||
:::
|
||||
|
||||
|
||||
|
@ -24,7 +24,7 @@ For this tutorial, use one of the following as a project:
|
||||
|
||||
The leaderboard will track experiments in one or all projects.
|
||||
|
||||
Begin by opening the **ClearML Web UI** and selecting a project, by doing one of the following:
|
||||
Begin by opening the [ClearML Web UI](../../webapp/webapp_overview.md) and selecting a project, by doing one of the following:
|
||||
* On the Dashboard, click a project card or **VIEW ALL**.
|
||||
* On the Projects page, click a project card or the **All projects** card.
|
||||
|
||||
|
@ -310,7 +310,7 @@ list_of_frames = myDataView.to_list()
|
||||
|
||||
### Controlling Query Iteration
|
||||
|
||||
Use [`DataView.set_iteration_parameters`](../references/hyperdataset/dataview.md#set_iteration_parameters) to manage the
|
||||
Use [`DataView.set_iteration_parameters()`](../references/hyperdataset/dataview.md#set_iteration_parameters) to manage the
|
||||
order, number, timing, and reproducibility of frames for training.
|
||||
|
||||
|
||||
|
@ -51,7 +51,7 @@ The app monitors your workspace for trigger events and will launch copies of the
|
||||
|
||||
## Dashboard
|
||||
|
||||
The Trigger Manager app instance's dashboard displays its console log. The log shows the instance’s activity: periodic
|
||||
The Trigger Manager app instance's dashboard displays its console log. The log shows the instance’s activity: periodic
|
||||
polling, and events triggered
|
||||
|
||||

|
@ -1,95 +0,0 @@
|
||||
/**
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*
|
||||
* @format
|
||||
*/
|
||||
|
||||
module.exports = {
|
||||
someSidebar: {
|
||||
'Getting Started': ['main','starting', 'architecture'],
|
||||
'Experiment Management': [
|
||||
{'Getting Started':['expman/main', 'expman/best practices']},
|
||||
{'Task':['expman/task/task','expman/task/task_details']},
|
||||
'expman/hyperparameters',
|
||||
'expman/artifacts',
|
||||
'expman/logger',
|
||||
'expman/integrations/libraries',
|
||||
'expman/clearml_task',
|
||||
{'Functionality':['expman/ui/leaderboard', 'expman/ui/task comparison']},
|
||||
{'Remote Development':['expman/remote/remote_jupyter','expman/remote/remote pycharm']},
|
||||
{'Advanced Topics':['expman/advanced/multiple tasks','expman/advanced/hpo']},
|
||||
],
|
||||
'Automation': [
|
||||
{
|
||||
'Getting Started': [
|
||||
'mlops/main',
|
||||
'mlops/setup/getting_started',
|
||||
'mlops/setup/agent',
|
||||
'mlops/setup/services',
|
||||
'mlops/best practices',
|
||||
|
||||
],
|
||||
},
|
||||
{'ClearML Agent': [
|
||||
'mlops/concepts/agents_and_queues','mlops/concepts/clearml_agent_usage','mlops/concepts/services']
|
||||
},
|
||||
'mlops/orchestration/pipeline/create pipeline',
|
||||
|
||||
],
|
||||
'Data Management': ['expman/data/data','expman/data/api'],
|
||||
'WebApp': ['webapp/webapp_overview','webapp/webapp_home',
|
||||
{'Projects Page':[
|
||||
{'Experiments':['webapp/webapp_exp_table','webapp/webapp_exp_track_visual','webapp/webapp_exp_reproducing','webapp/webapp_exp_tuning',
|
||||
'webapp/webapp_exp_comparing','webapp/webapp_exp_sharing']},
|
||||
{'Models': ['webapp/webapp_model_table','webapp/webapp_model_viewing','webapp/webapp_model_modifying']},
|
||||
'webapp/webapp_archiving']},
|
||||
'webapp/webapp_profile','webapp/webapp_workers_queues'],
|
||||
//'References': ['references/clearml_ref','references/clearml_agent_ref'],
|
||||
'DevOps': ['devops/main','expman/integrations/storage'],
|
||||
'Comments': ['Notes'],
|
||||
|
||||
|
||||
},
|
||||
refSidebar: {
|
||||
'References':['references/refmain','references/clearml_ref','references/clearml_agent_ref'
|
||||
],
|
||||
},
|
||||
guidesSidebar:{
|
||||
'Guides': [
|
||||
'guides/guidemain',
|
||||
{'Frameworks':[
|
||||
{'Autokeras':['guides/frameworks/autokeras/integration_autokeras','guides/frameworks/autokeras/autokeras_imdb_example']},
|
||||
{'FastAI':['guides/frameworks/fastai/fastai_with_tensorboard']},
|
||||
{'Keras': ['guides/frameworks/keras/allegro_clearml_keras_tb_example','guides/frameworks/keras/jupyter','guides/frameworks/keras/keras_tensorboard',
|
||||
'guides/frameworks/keras/manual_model_upload']},
|
||||
{'Matplotlib': ['guides/frameworks/matplotlib/allegro_clearml_matplotlib_example','guides/frameworks/matplotlib/matplotlib_example']},
|
||||
{'Pytorch':['guides/frameworks/pytorch/manual_model_upload','guides/frameworks/pytorch/pytorch_distributed_example','guides/frameworks/pytorch/pytorch_matplotlib',
|
||||
'guides/frameworks/pytorch/pytorch_mnist','guides/frameworks/pytorch/pytorch_tensorboard','guides/frameworks/pytorch/pytorch_tensorboardx',
|
||||
'guides/frameworks/pytorch/tensorboard_toy_pytorch']},
|
||||
{'Scikit-Learn':['guides/frameworks/scikit-learn/sklearn_joblib_example','guides/frameworks/scikit-learn/sklearn_matplotlib_example']},
|
||||
{'TensorboardX':['guides/frameworks/tensorboardx/tensorboardx']},
|
||||
{'Tensorflow':['guides/frameworks/tensorflow/manual_model_upload','guides/frameworks/tensorflow/tensorboard_pr_curve','guides/frameworks/tensorflow/tensorboard_toy',
|
||||
'guides/frameworks/tensorflow/tensorflow_mnist','guides/frameworks/tensorflow/integration_keras_tuner']},
|
||||
{'XGboost':['guides/frameworks/xgboost/xgboost_sample']},
|
||||
{'Pytorch Ignite':['guides/frameworks/pytorch_ignite/integration_pytorch_ignite']}
|
||||
]},
|
||||
{'Automation':['guides/automation/manual_random_param_search_example','guides/automation/task_piping']},
|
||||
{'Data Management':['guides/data management/data_man_simple','guides/data management/data_man_folder_sync','guides/data management/data_man_cifar_classification']},
|
||||
{'Clearml-task':['guides/clearml-task/clearml_task_tutorial']},
|
||||
{'Distributed':['guides/distributed/distributed_pytorch_example','guides/distributed/subprocess_example']},
|
||||
{'Optimization':['guides/optimization/hyper-parameter-optimization/examples_hyperparam_opt']},
|
||||
{'Pipelines':['guides/pipeline/pipeline_controller']},
|
||||
{'Reporting':['guides/reporting/3d_plots_reporting','guides/reporting/artifacts','guides/reporting/clearml_logging_example','guides/reporting/html_reporting',
|
||||
'guides/reporting/hyper_parameters','guides/reporting/image_reporting','guides/reporting/manual_matplotlib_reporting','guides/reporting/media_reporting',
|
||||
'guides/reporting/model_config','guides/reporting/pandas_reporting','guides/reporting/plotly_reporting',
|
||||
'guides/reporting/scalar_reporting','guides/reporting/scatter_hist_confusion_mat_reporting','guides/reporting/text_reporting']},
|
||||
{'Services':['guides/services/aws_autoscaler','guides/services/cleanup_service','guides/services/execute_jupyter_notebook_server','guides/services/slack_alerts']},
|
||||
{'IDEs':['guides/ide/integration_jupyter','guides/ide/integration_pycharm', 'guides/ide/remote_jupyter_tutorial']},
|
||||
{'ClearML':['guides/clearml/building_leader_board', 'guides/clearml/explicit_reporting', 'guides/clearml/tuning_exp']},
|
||||
{'Storage':['guides/examples_storagehelper']}
|
||||
]
|
||||
}
|
||||
};
|
Loading…
Reference in New Issue
Block a user