mirror of
https://github.com/clearml/clearml-docs
synced 2025-06-26 18:17:44 +00:00
Small edits (#636)
This commit is contained in:
@@ -33,7 +33,7 @@ Visualize the reported surface plot in **PLOTS**.
|
||||
|
||||
## 3D Scatter Plot
|
||||
|
||||
To plot a series as a 3-dimensional scatter plot, use the [Logger.report_scatter3d](../../references/sdk/logger.md#report_scatter3d)
|
||||
To plot a series as a 3D scatter plot, use the [Logger.report_scatter3d](../../references/sdk/logger.md#report_scatter3d)
|
||||
method.
|
||||
```python
|
||||
# report 3d scatter plot
|
||||
|
||||
@@ -67,7 +67,7 @@ logger.report_scatter2d(
|
||||
|
||||
### 3D Plots
|
||||
|
||||
To plot a series as a 3-dimensional scatter plot, use the [Logger.report_scatter3d](../../references/sdk/logger.md#report_scatter3d) method.
|
||||
To plot a series as a 3D scatter plot, use the [Logger.report_scatter3d](../../references/sdk/logger.md#report_scatter3d) method.
|
||||
|
||||
```python
|
||||
# report 3d scatter plot
|
||||
|
||||
@@ -4,7 +4,7 @@ title: Explicit Reporting Tutorial
|
||||
|
||||
In this tutorial, learn how to extend ClearML automagical capturing of inputs and outputs with explicit reporting.
|
||||
|
||||
In this example, we will add the following to the [pytorch_mnist.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_mnist.py)
|
||||
In this example, you will add the following to the [pytorch_mnist.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_mnist.py)
|
||||
example script from ClearML's GitHub repo:
|
||||
|
||||
* Setting an output destination for model checkpoints (snapshots).
|
||||
@@ -38,7 +38,7 @@ experiment runs. Some possible destinations include:
|
||||
* Azure Storage.
|
||||
|
||||
Specify the output location in the `output_uri` parameter of the [`Task.init`](../../references/sdk/task.md#taskinit) method.
|
||||
In this tutorial, we specify a local folder destination.
|
||||
In this tutorial, specify a local folder destination.
|
||||
|
||||
In `pytorch_mnist_tutorial.py`, change the code from:
|
||||
|
||||
@@ -135,7 +135,7 @@ def train(args, model, device, train_loader, optimizer, epoch):
|
||||
|
||||
### Plot Other (Not Scalar) Data
|
||||
|
||||
The script contains a function named `test`, which determines loss and correct for the trained model. We add a histogram
|
||||
The script contains a function named `test`, which determines loss and correct for the trained model. Add a histogram
|
||||
and confusion matrix to log them.
|
||||
|
||||
```python
|
||||
@@ -187,7 +187,7 @@ def test(args, model, device, test_loader):
|
||||
|
||||
### Log Text
|
||||
|
||||
Extend ClearML by explicitly logging text, including errors, warnings, and debugging statements. We use the [Logger.report_text](../../references/sdk/logger.md#report_text)
|
||||
Extend ClearML by explicitly logging text, including errors, warnings, and debugging statements. Use the [Logger.report_text](../../references/sdk/logger.md#report_text)
|
||||
method and its argument `level` to report a debugging message.
|
||||
|
||||
```python
|
||||
@@ -259,7 +259,7 @@ Supported artifacts include:
|
||||
* Dictionaries - stored as JSONs
|
||||
* Numpy arrays - stored as NPZ files
|
||||
|
||||
In the tutorial script, we upload the loss data as an artifact using the [Task.upload_artifact](../../references/sdk/task.md#upload_artifact)
|
||||
In the tutorial script, upload the loss data as an artifact using the [Task.upload_artifact](../../references/sdk/task.md#upload_artifact)
|
||||
method with metadata specified in the `metadata` parameter.
|
||||
|
||||
```python
|
||||
|
||||
Reference in New Issue
Block a user