From ab6ad5b2ad8597bf653fb0673d25adb674e01ec4 Mon Sep 17 00:00:00 2001 From: pollfly <75068813+pollfly@users.noreply.github.com> Date: Tue, 21 Nov 2023 17:26:01 +0200 Subject: [PATCH] Add PyTorch Lightning Integration page (#713) --- .../pytorch_lightning_example.md | 1 - docs/integrations/pytorch_lightning.md | 117 ++++++++++++++++++ sidebars.js | 2 +- 3 files changed, 118 insertions(+), 2 deletions(-) create mode 100644 docs/integrations/pytorch_lightning.md diff --git a/docs/guides/frameworks/pytorch_lightning/pytorch_lightning_example.md b/docs/guides/frameworks/pytorch_lightning/pytorch_lightning_example.md index e13193a6..1ca5d7e9 100644 --- a/docs/guides/frameworks/pytorch_lightning/pytorch_lightning_example.md +++ b/docs/guides/frameworks/pytorch_lightning/pytorch_lightning_example.md @@ -1,6 +1,5 @@ --- title: PyTorch Lightning -displayed_sidebar: mainSidebar --- The [pytorch-lightning](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch-lightning/pytorch_lightning_example.py) diff --git a/docs/integrations/pytorch_lightning.md b/docs/integrations/pytorch_lightning.md new file mode 100644 index 00000000..6c0125db --- /dev/null +++ b/docs/integrations/pytorch_lightning.md @@ -0,0 +1,117 @@ +--- +title: PyTorch Lightning +--- + +:::tip +If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md) for setup +instructions. +::: + +[PyTorch Lightning](https://github.com/Lightning-AI/lightning) is a framework that simplifies the process of training and deploying PyTorch models. ClearML seamlessly +integrates with PyTorch Lightning, automatically logging PyTorch models and more. + +All you have to do is simply add two lines of code to your PyTorch Lightning script: + +```python +from clearml import Task +task = Task.init(task_name="", project_name="") +``` + +And that’s it! This creates a [ClearML Task](../fundamentals/task.md) which captures: +* Source code and uncommitted changes +* Installed packages +* PyTorch Models +* [TensorBoard](https://www.tensorflow.org/tensorboard) outputs +* Console output +* General details such as machine details, runtime, creation date etc. +* And more + +You can view all the task details in the [WebApp](../webapp/webapp_overview.md). + +See an example of PyTorch Lightning and ClearML in action [here](../guides/frameworks/pytorch_lightning/pytorch_lightning_example.md). + +## Automatic Logging Control +By default, when ClearML is integrated into your script, it automatically captures information from supported frameworks. +But, you may want to have more control over what your experiment logs. + +To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit). +Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged +frameworks, input a dictionary, with framework-boolean pairs. + +For example: + +```python +auto_connect_frameworks={ + 'pytorch': True, 'tensorboard': False, 'matplotlib': True, 'tensorflow': True, + 'xgboost': True, 'scikit': True, 'fastai': True, 'lightgbm': True, + 'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True, + 'megengine': True, 'jsonargparse': True, 'catboost': True +} +``` + +The preceding code will log PyTorch models, but will not log any information reported to TensorBoard. + +You can also input wildcards as dictionary values, so ClearML will log a model created by a framework only if its local +path matches at least one wildcard. + +For example, in the code below, ClearML will log PyTorch models only if their paths have the `.pt` extension. The +unspecified frameworks' values default to true so all their models are automatically logged. + +```python +auto_connect_frameworks={'pytorch' : '*.pt'} +``` + +## Manual Logging +To augment its automatic logging, ClearML also provides an explicit logging interface. + +See more information about explicitly logging information to a ClearML Task: +* [Models](../clearml_sdk/model_sdk.md#manually-logging-models) +* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files) +* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task) +* [Scalars](../clearml_sdk/task_sdk.md#scalars) +* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting) + +See [Explicit Reporting Tutorial](../guides/reporting/explicit_reporting.md). + +## Remote Execution +ClearML logs all the information required to reproduce an experiment on a different machine (installed packages, +uncommitted changes etc.). The [ClearML Agent](../clearml_agent) listens to designated queues and when a task is enqueued, +the agent pulls it, recreates its execution environment, and runs it, reporting its scalars, plots, etc. to the +experiment manager. + +Deploy a ClearML Agent onto any machine (e.g. a cloud VM, a local GPU machine, your own laptop) by simply running the +following command on it: + +```commandline +clearml-agent daemon --queue [--docker] +``` + +Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the +cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up +and shuts down instances as needed, according to a resource budget that you set. + +### Cloning, Editing, and Enqueuing + +![Cloning, editing, enqueuing gif](../img/gif/integrations_yolov5.gif) + +Use ClearML's web interface to edit task details, like configuration parameters or input models, then execute the task +with the new configuration on a remote machine: + +* Clone the experiment +* Edit the hyperparameters and/or other details +* Enqueue the task + +The ClearML Agent executing the task will use the new values to [override any hard coded values](../clearml_agent). + +### Executing a Task Remotely + +You can set a task to be executed remotely programmatically by adding [`Task.execute_remotely()`](../references/sdk/task.md#execute_remotely) +to your script. This method stops the current local execution of the task, and then enqueues it to a specified queue to +re-run it on a remote machine. + +```python +# If executed locally, process will terminate, and a copy will be executed by an agent instead +task.execute_remotely(queue_name='default', exit_process=True) +``` + + diff --git a/sidebars.js b/sidebars.js index ffda6790..e51d8008 100644 --- a/sidebars.js +++ b/sidebars.js @@ -67,7 +67,7 @@ module.exports = { 'integrations/megengine', 'integrations/monai', 'integrations/mmcv', 'integrations/optuna', 'integrations/python_fire', 'integrations/pytorch', 'integrations/ignite', - 'guides/frameworks/pytorch_lightning/pytorch_lightning_example', + 'integrations/pytorch_lightning', 'integrations/scikit_learn', 'integrations/seaborn', 'integrations/tensorboard', 'integrations/tensorboardx', 'integrations/tensorflow', 'integrations/xgboost', 'integrations/yolov5', 'integrations/yolov8'