mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-09 13:42:26 +00:00
Small edits (#906)
This commit is contained in:
parent
1ed353020f
commit
a943bbd39a
@ -259,7 +259,7 @@ dataset.get_logger().report_histogram(
|
||||
|
||||
## Uploading Files
|
||||
|
||||
To upload the dataset files to network storage, use the [`Dataset.upload`](../references/sdk/dataset.md#upload) method.
|
||||
To upload the dataset files to network storage, use [`Dataset.upload()`](../references/sdk/dataset.md#upload).
|
||||
|
||||
Use the `output_url` parameter to specify storage target, such as S3 / GS / Azure. For example:
|
||||
* A shared folder: `/mnt/share/folder`
|
||||
@ -319,7 +319,7 @@ Dataset.delete(
|
||||
```
|
||||
|
||||
## Renaming Datasets
|
||||
Rename a dataset using the [`Dataset.rename`](../references/sdk/dataset.md#datasetrename) class method. All the datasets
|
||||
Rename a dataset using the [`Dataset.rename()`](../references/sdk/dataset.md#datasetrename) class method. All the datasets
|
||||
with the given `dataset_project` and `dataset_name` will be renamed.
|
||||
|
||||
```python
|
||||
@ -331,7 +331,7 @@ Dataset.rename(
|
||||
```
|
||||
|
||||
## Moving Datasets to Another Project
|
||||
Move a dataset to another project using the [`Dataset.move_to_project`](../references/sdk/dataset.md#datasetmove_to_projetc)
|
||||
Move a dataset to another project using the [`Dataset.move_to_project()`](../references/sdk/dataset.md#datasetmove_to_projetc)
|
||||
class method. All the datasets with the given `dataset_project` and `dataset_name` will be moved to the new dataset
|
||||
project.
|
||||
|
||||
|
@ -196,7 +196,7 @@ Pass one of the following in the `continue_last_task` parameter:
|
||||
iteration after the last reported one. Pass `0`, to disable the automatic last iteration offset. To also specify a
|
||||
task ID, use the `reuse_last_task_id` parameter.
|
||||
|
||||
You can also continue a task previously executed in offline mode, using the `Task.import_offline_session` method.
|
||||
You can also continue a task previously executed in offline mode, using `Task.import_offline_session()`.
|
||||
See [Offline Mode](#offline-mode).
|
||||
|
||||
### Empty Task Creation
|
||||
@ -263,7 +263,7 @@ A task can be identified by its project and name, and by a unique identifier (UU
|
||||
a task can be changed after an experiment has been executed, but its ID can't be changed.
|
||||
|
||||
Programmatically, task objects can be retrieved by querying the system based on either the task ID or a project and name
|
||||
combination using the [`Task.get_task`](../references/sdk/task.md#taskget_task) class method. If a project / name
|
||||
combination using the [`Task.get_task()`](../references/sdk/task.md#taskget_task) class method. If a project / name
|
||||
combination is used, and multiple tasks have the exact same name, the function will return the *last modified task*.
|
||||
|
||||
For example:
|
||||
@ -283,7 +283,7 @@ The task's outputs, such as artifacts and models, can also be retrieved.
|
||||
|
||||
## Querying / Searching Tasks
|
||||
|
||||
Search and filter tasks programmatically. Input search parameters into the [`Task.get_tasks`](../references/sdk/task.md#taskget_tasks)
|
||||
Search and filter tasks programmatically. Input search parameters into the [`Task.get_tasks()`](../references/sdk/task.md#taskget_tasks)
|
||||
class method, which returns a list of task objects that match the search. Pass `allow_archived=False` to filter out archived
|
||||
tasks.
|
||||
|
||||
@ -570,7 +570,7 @@ You can work with tasks in Offline Mode, in which all the data and logs that the
|
||||
session folder, which can later be uploaded to the [ClearML Server](../deploying_clearml/clearml_server.md).
|
||||
|
||||
You can enable offline mode in one of the following ways:
|
||||
* Before initializing a task, use the [`Task.set_offline`](../references/sdk/task.md#taskset_offline) class method and set
|
||||
* Before initializing a task, use the [`Task.set_offline()`](../references/sdk/task.md#taskset_offline) class method and set
|
||||
the `offline_mode` argument to `True`:
|
||||
|
||||
```python
|
||||
@ -607,7 +607,7 @@ Upload the execution data that the Task captured offline to the ClearML Server u
|
||||
```
|
||||
Pass the path to the zip folder containing the captured information with the `--import-offline-session` parameter
|
||||
|
||||
* [`Task.import_offline_session`](../references/sdk/task.md#taskimport_offline_session) class method
|
||||
* [`Task.import_offline_session()`](../references/sdk/task.md#taskimport_offline_session) class method
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
@ -903,7 +903,7 @@ This method saves configuration objects as blobs (i.e. ClearML is not aware of t
|
||||
```python
|
||||
# connect a configuration dictionary
|
||||
model_config_dict = {
|
||||
'value': 13.37, 'dict': {'sub_value': 'string'}, 'list_of_ints': [1, 2, 3, 4],
|
||||
'value': 13.37, 'dict': {'sub_value': 'string'}, 'list_of_ints': [1, 2, 3, 4],
|
||||
}
|
||||
model_config_dict = task.connect_configuration(
|
||||
name='dictionary', configuration=model_config_dict
|
||||
|
@ -455,7 +455,7 @@ You cannot undo the deletion of a ClearML object.
|
||||
#### Can I change the random seed my experiment uses?
|
||||
|
||||
Yes! By default, ClearML initializes Tasks with an initial seed of `1337` to ensure reproducibility. To set a different
|
||||
value for your task, use the [`Task.set_random_seed`](references/sdk/task.md#taskset_random_seed) class method and
|
||||
value for your task, use the [`Task.set_random_seed()`](references/sdk/task.md#taskset_random_seed) class method and
|
||||
provide the new seed value, **before initializing the task**.
|
||||
|
||||
You can disable the deterministic behavior entirely by passing `Task.set_random_seed(None)`.
|
||||
@ -557,7 +557,7 @@ Yes! You can use ClearML's Offline Mode, in which all the data and logs that a t
|
||||
local folder.
|
||||
|
||||
You can enable offline mode in one of the following ways:
|
||||
* Before initializing a task, use the [`Task.set_offline`](references/sdk/task.md#taskset_offline) class method and set
|
||||
* Before initializing a task, use the [`Task.set_offline()`](references/sdk/task.md#taskset_offline) class method and set
|
||||
the `offline_mode` argument to `True`
|
||||
* Before running a task, set `CLEARML_OFFLINE_MODE=1`
|
||||
|
||||
@ -578,7 +578,7 @@ ClearML Task: Offline session stored in /home/user/.clearml/cache/offline/b78684
|
||||
In order to upload to the ClearML Server the execution data that the Task captured offline, do one of the
|
||||
following:
|
||||
* Use the `import-offline-session <session_path>` option of the [clearml-task](apps/clearml_task.md) CLI
|
||||
* Use the [`Task.import_offline_session`](references/sdk/task.md#taskimport_offline_session) method.
|
||||
* Use the [`Task.import_offline_session()`](references/sdk/task.md#taskimport_offline_session) method.
|
||||
|
||||
See [Storing Task Data Offline](guides/set_offline.md).
|
||||
|
||||
@ -627,7 +627,7 @@ tutorial.
|
||||
|
||||
#### How can I report more than one scatter 2D series on the same plot? <a id="multiple-scatter2D"></a>
|
||||
|
||||
The [`Logger.report_scatter2d`](references/sdk/logger.md#report_scatter2d)
|
||||
The [`Logger.report_scatter2d()`](references/sdk/logger.md#report_scatter2d)
|
||||
method reports all series with the same `title` and `iteration` parameter values on the same plot.
|
||||
|
||||
For example, the following two scatter2D series are reported on the same plot, because both have a `title` of `example_scatter` and an `iteration` of `1`:
|
||||
|
@ -46,7 +46,7 @@ Projects can also be created using the [`projects.create`](../references/api/pro
|
||||
|
||||
### View All Projects in System
|
||||
|
||||
To view all projects in the system, use the `Task.get_projects` class method:
|
||||
To view all projects in the system, use the [`Task.get_projects()`](../references/sdk/task.md#taskgetprojects) class method:
|
||||
|
||||
```python
|
||||
project_list = Task.get_projects()
|
||||
|
@ -63,7 +63,7 @@ pip install clearml
|
||||
page, click **Create new credentials**.
|
||||
|
||||
The **LOCAL PYTHON** tab shows the data required by the setup wizard (a copy to clipboard action is available on
|
||||
hover)
|
||||
hover).
|
||||
|
||||
1. At the command prompt `Paste copied configuration here:`, copy and paste the ClearML credentials.
|
||||
The setup wizard confirms the credentials.
|
||||
|
@ -3,7 +3,7 @@ title: Remote Execution
|
||||
---
|
||||
|
||||
The [execute_remotely_example](https://github.com/allegroai/clearml/blob/master/examples/advanced/execute_remotely_example.py)
|
||||
script demonstrates the use of the [`Task.execute_remotely`](../../references/sdk/task.md#execute_remotely) method.
|
||||
script demonstrates the use of the [`Task.execute_remotely()`](../../references/sdk/task.md#execute_remotely) method.
|
||||
|
||||
:::note
|
||||
Make sure to have at least one [ClearML Agent](../../clearml_agent.md) running and assigned to listen to the `default` queue:
|
||||
|
@ -45,7 +45,7 @@ optimizer = HyperParameterOptimizer(
|
||||
# Configuring optimization parameters
|
||||
execution_queue='dan_queue', # queue to schedule the experiments for execution
|
||||
max_number_of_concurrent_tasks=2, # number of concurrent experiments
|
||||
optimization_time_limit=60., # set the time limit for the optimization process
|
||||
optimization_time_limit=60, # set the time limit for the optimization process
|
||||
compute_time_limit=120, # set the compute time limit (sum of execution time on all machines)
|
||||
total_max_jobs=20, # set the maximum number of experiments for the optimization.
|
||||
# Converted to total number of iteration for OptimizerBOHB
|
||||
|
@ -3,8 +3,7 @@ title: HTML Reporting
|
||||
---
|
||||
|
||||
The [html_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py) example
|
||||
demonstrates reporting local HTML files and HTML by URL, using the [Logger.report_media](../../references/sdk/logger.md#report_media)
|
||||
method.
|
||||
demonstrates reporting local HTML files and HTML by URL using [`Logger.report_media()`](../../references/sdk/logger.md#report_media).
|
||||
|
||||
ClearML reports these HTML debug samples in the **ClearML Web UI** **>** experiment details **>**
|
||||
**DEBUG SAMPLES** tab.
|
||||
@ -31,7 +30,7 @@ Logger.current_logger().report_media(
|
||||
|
||||
## Reporting HTML Local Files
|
||||
|
||||
Report the following using the `Logger.report_media` parameter method `local_path` parameter:
|
||||
Report the following using `Logger.report_media()`'s `local_path` parameter:
|
||||
* [Interactive HTML](#interactive-html)
|
||||
* [Bokeh GroupBy HTML](#bokeh-groupby-html)
|
||||
* [Bokeh Graph HTML](#bokeh-graph-html)
|
||||
|
@ -54,8 +54,8 @@ TensorFlow Definitions appear in **HYPEPARAMETERS** **>** **TF_DEFINE**.
|
||||
|
||||
## Parameter Dictionaries
|
||||
|
||||
Connect a parameter dictionary to a Task by calling the [`Task.connect`](../../references/sdk/task.md#connect)
|
||||
method, and ClearML logs the parameters. ClearML also tracks changes to the parameters.
|
||||
Connect a parameter dictionary to a Task by calling [`Task.connect()`](../../references/sdk/task.md#connect),
|
||||
and ClearML logs the parameters. ClearML also tracks changes to the parameters.
|
||||
|
||||
```python
|
||||
parameters = {
|
||||
|
@ -5,7 +5,7 @@ title: Plotly Reporting
|
||||
The [plotly_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/plotly_reporting.py) example
|
||||
demonstrates ClearML's Plotly integration and reporting.
|
||||
|
||||
Report Plotly plots in ClearML by calling the [`Logger.report_plotly`](../../references/sdk/logger.md#report_plotly) method, and passing a complex
|
||||
Report Plotly plots in ClearML by calling the [`Logger.report_plotly()`](../../references/sdk/logger.md#report_plotly) method, and passing a complex
|
||||
Plotly figure, using the `figure` parameter.
|
||||
|
||||
In this example, the Plotly figure is created using `plotly.express.scatter` (see the [Plotly documentation](https://plotly.com/python/line-and-scatter/)):
|
||||
|
@ -27,7 +27,7 @@ Artifact details (location and size) can be viewed in ClearML's **web UI > exper
|
||||
|
||||
## Task 2: Accessing an Artifact
|
||||
|
||||
After the second task is initialized, the script uses the [`Task.get_task`](../../references/sdk/task.md#taskget_task)
|
||||
After the second task is initialized, the script uses the [`Task.get_task()`](../../references/sdk/task.md#taskget_task)
|
||||
class method to get the first task and access its artifacts, specifically the `data file` artifact. The `get_local_copy`
|
||||
method downloads the files and returns a path.
|
||||
|
||||
|
@ -152,7 +152,7 @@ Make sure a `clearml-agent` is assigned to that queue.
|
||||
### Configuration
|
||||
|
||||
The values configured through the wizard are stored in the task's hyperparameters and configuration objects by using the
|
||||
[`Task.connect`](../../references/sdk/task.md#connect) and [`Task.set_configuration_object`](../../references/sdk/task.md#set_configuration_object)
|
||||
[`Task.connect()`](../../references/sdk/task.md#connect) and [`Task.set_configuration_object()`](../../references/sdk/task.md#set_configuration_object)
|
||||
methods respectively. They can be viewed in the WebApp, in the task's **CONFIGURATION** page under **HYPERPARAMETERS** and **CONFIGURATION OBJECTS > General**.
|
||||
|
||||
ClearML automatically logs command line arguments defined with argparse. View them in the experiments **CONFIGURATION**
|
||||
|
@ -52,7 +52,7 @@ an `APIClient` object that establishes a session with the ClearML Server, and ac
|
||||
* [`Task.delete`](../../references/sdk/task.md#delete) - Delete a Task.
|
||||
|
||||
## Configuration
|
||||
The experiment's hyperparameters are explicitly logged to ClearML using the [`Task.connect`](../../references/sdk/task.md#connect)
|
||||
The experiment's hyperparameters are explicitly logged to ClearML using the [`Task.connect()`](../../references/sdk/task.md#connect)
|
||||
method. View them in the WebApp, in the experiment's **CONFIGURATION** page under **HYPERPARAMETERS > General**.
|
||||
|
||||
The task can be reused. Clone the task, edit its parameters, and enqueue the task to run in ClearML Agent [services mode](../../clearml_agent/clearml_agent_services_mode.md).
|
||||
|
@ -16,7 +16,7 @@ class. The storage examples include:
|
||||
## Working with Files
|
||||
### Downloading a File
|
||||
|
||||
To download a ZIP file from storage to the `global` cache context, use the [`StorageManager.get_local_copy`](../../references/sdk/storage.md#storagemanagerget_local_copy)
|
||||
To download a ZIP file from storage to the `global` cache context, use the [`StorageManager.get_local_copy()`](../../references/sdk/storage.md#storagemanagerget_local_copy)
|
||||
class method, and specify the destination location as the `remote_url` argument:
|
||||
|
||||
```python
|
||||
@ -42,7 +42,7 @@ StorageManager.get_local_copy(remote_url="s3://MyBucket/MyFolder/file.ext", extr
|
||||
```
|
||||
|
||||
By default, the `StorageManager` reports its download progress to the console every 5MB. You can change this using the
|
||||
[`StorageManager.set_report_download_chunk_size`](../../references/sdk/storage.md#storagemanagerset_report_download_chunk_size)
|
||||
[`StorageManager.set_report_download_chunk_size()`](../../references/sdk/storage.md#storagemanagerset_report_download_chunk_size)
|
||||
class method, and specifying the chunk size in MB (not supported for Azure and GCP storage).
|
||||
|
||||
```python
|
||||
@ -51,7 +51,7 @@ StorageManager.set_report_download_chunk_size(chunk_size_mb=10)
|
||||
|
||||
### Uploading a File
|
||||
|
||||
To upload a file to storage, use the [`StorageManager.upload_file`](../../references/sdk/storage.md#storagemanagerupload_file)
|
||||
To upload a file to storage, use the [`StorageManager.upload_file()`](../../references/sdk/storage.md#storagemanagerupload_file)
|
||||
class method. Specify the full path of the local file as the `local_file` argument, and the remote URL as the `remote_url`
|
||||
argument.
|
||||
|
||||
@ -64,7 +64,7 @@ StorageManager.upload_file(
|
||||
Use the `retries` parameter to set the number of times file upload should be retried in case of failure.
|
||||
|
||||
By default, the `StorageManager` reports its upload progress to the console every 5MB. You can change this using the
|
||||
[`StorageManager.set_report_upload_chunk_size`](../../references/sdk/storage.md#storagemanagerset_report_upload_chunk_size)
|
||||
[`StorageManager.set_report_upload_chunk_size()`](../../references/sdk/storage.md#storagemanagerset_report_upload_chunk_size)
|
||||
class method, and specifying the chunk size in MB (not supported for Azure and GCP storage).
|
||||
|
||||
```python
|
||||
@ -73,7 +73,7 @@ StorageManager.set_report_upload_chunk_size(chunk_size_mb=10)
|
||||
|
||||
## Working with Folders
|
||||
### Downloading a Folder
|
||||
Download a folder to a local machine using the [`StorageManager.download_folder`](../../references/sdk/storage.md#storagemanagerdownload_folder)
|
||||
Download a folder to a local machine using the [`StorageManager.download_folder()`](../../references/sdk/storage.md#storagemanagerdownload_folder)
|
||||
class method. Specify the remote storage location as the `remote_url` argument and the target local location as the
|
||||
`local_folder` argument.
|
||||
|
||||
@ -90,7 +90,7 @@ For example: if you have a remote file `s3://bucket/sub/file.ext`, then
|
||||
You can input `match_wildcard` so only files matching the wildcard are downloaded.
|
||||
|
||||
### Uploading a Folder
|
||||
Upload a local folder to remote storage using the [`StorageManager.upload_folder`](../../references/sdk/storage.md#storagemanagerupload_folder)
|
||||
Upload a local folder to remote storage using the [`StorageManager.upload_folder()`](../../references/sdk/storage.md#storagemanagerupload_folder)
|
||||
class method. Specify the local folder to upload as the `local_folder` argument and the target remote location as the
|
||||
`remote_url` argument.
|
||||
|
||||
@ -112,7 +112,7 @@ You can input `match_wildcard` so only files matching the wildcard are uploaded.
|
||||
|
||||
## Setting Cache Limits
|
||||
|
||||
To set a limit on the number of files cached, use the [`StorageManager.set_cache_file_limit`](../../references/sdk/storage.md#storagemanagerset_cache_file_limit)
|
||||
To set a limit on the number of files cached, use the [`StorageManager.set_cache_file_limit()`](../../references/sdk/storage.md#storagemanagerset_cache_file_limit)
|
||||
class method and specify the `cache_file_limit` argument as the maximum number of files. This does not limit the cache size,
|
||||
only the number of files.
|
||||
|
||||
|
@ -50,7 +50,7 @@ To add FrameGroups to a Dataset Version:
|
||||
|
||||
1. Append the FrameGroup object to a list of frames
|
||||
|
||||
1. Add that list to a DatasetVersion using the [`DatasetVersion.add_frames`](../references/hyperdataset/hyperdatasetversion.md#add_frames)
|
||||
1. Add that list to a DatasetVersion using the [`DatasetVersion.add_frames()`](../references/hyperdataset/hyperdatasetversion.md#add_frames)
|
||||
method. Use the `upload_retries` parameter to set the number of times the upload of a frame should be retried in case of
|
||||
failure, before marking the frame as failed and continuing to upload the next frames. In the case that a single frame in
|
||||
the FrameGroup fails to upload, the entire group will not be registered. The method returns a list of frames that were
|
||||
@ -116,7 +116,7 @@ myVersion.update_frames(frames)
|
||||
|
||||
### Deleting Frames
|
||||
|
||||
To delete a FrameGroup, use the [`DatasetVersion.delete_frames`](../references/hyperdataset/hyperdatasetversion.md#delete_frames)
|
||||
To delete a FrameGroup, use the [`DatasetVersion.delete_frames()`](../references/hyperdataset/hyperdatasetversion.md#delete_frames)
|
||||
method, just like when deleting a SingleFrame, except that a FrameGroup is being referenced.
|
||||
|
||||
```python
|
||||
|
@ -46,7 +46,7 @@ For example:
|
||||
```python
|
||||
auto_connect_frameworks={
|
||||
'fastai': False, 'catboost': True, 'tensorflow': False, 'tensorboard': False, 'pytorch': True,
|
||||
'xgboost': False, 'scikit': True, 'lightgbm': False,
|
||||
'xgboost': False, 'scikit': True, 'lightgbm': False,
|
||||
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
|
||||
'megengine': True
|
||||
}
|
||||
|
@ -598,7 +598,7 @@ Administrators specify the total number of resources available in each pool. The
|
||||
workload assignment up to the available number of resources.
|
||||
|
||||
Administrators control the execution priority within a pool across the resource profiles making use of it (e.g. if jobs
|
||||
of profile A and jobs of profile B currently need to run in a pool, allocate resources for profile A jobs first or vice
|
||||
of profile A and jobs of profile B currently need to run in a pool, allocate resources for profile A jobs first or vice
|
||||
versa).
|
||||
|
||||
The resource pool cards are displayed on the top of the Resource Configuration settings page. Each card displays the
|
||||
|
Loading…
Reference in New Issue
Block a user