mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-03 02:32:49 +00:00
Small edits (#784)
This commit is contained in:
parent
91fcaa2f24
commit
90f2affe91
@ -103,9 +103,9 @@ clearml-data remove [-h] [--id ID] [--files [FILES [FILES ...]]]
|
||||
|
||||
## upload
|
||||
|
||||
Upload the local dataset changes to the server. By default, it's uploaded to the [ClearML Server](../deploying_clearml/clearml_server.md). You can specify a different storage
|
||||
Upload the local dataset changes to the server. By default, it's uploaded to the ClearML file server. You can specify a different storage
|
||||
medium by entering an upload destination. For example:
|
||||
* A shared folder: `:/mnt/shared/folder`
|
||||
* A shared folder: `/mnt/shared/folder`
|
||||
* S3: `s3://bucket/folder`
|
||||
* Non-AWS S3-like services (e.g. MinIO): `s3://host_addr:port/bucket`
|
||||
* Google Cloud Storage: `gs://bucket-name/folder`
|
||||
|
@ -69,8 +69,8 @@ Use the `output_uri` parameter to specify a network storage target to upload the
|
||||
* Google Cloud Storage: `gs://bucket-name/folder`
|
||||
* Azure Storage: `azure://<account name>.blob.core.windows.net/path/to/file`
|
||||
|
||||
By default, the dataset uploads to ClearML's file server. The `output_uri` parameter of the [`Dataset.upload`](#uploading-files)
|
||||
method overrides this parameter's value.
|
||||
By default, the dataset uploads to ClearML's file server. The `output_uri` parameter of [`Dataset.upload()`](#uploading-files)
|
||||
overrides this parameter's value.
|
||||
|
||||
The created dataset inherits the content of the `parent_datasets`. When multiple dataset parents are listed,
|
||||
they are merged in order of specification. Each parent overrides any overlapping files from a previous parent dataset.
|
||||
@ -98,8 +98,8 @@ squashed_dataset_2 = Dataset.squash(
|
||||
)
|
||||
```
|
||||
|
||||
In addition, the target storage location for the squashed dataset can be specified using the `output_uri` parameter of the
|
||||
[`Dataset.squash`](../references/sdk/dataset.md#datasetsquash) method.
|
||||
In addition, the target storage location for the squashed dataset can be specified using the `output_uri` parameter of
|
||||
[`Dataset.squash()`](../references/sdk/dataset.md#datasetsquash).
|
||||
|
||||
## Accessing Datasets
|
||||
Once a dataset has been created and uploaded to a server, the dataset can be accessed programmatically from anywhere.
|
||||
|
@ -62,7 +62,7 @@ Upload the dataset:
|
||||
dataset.upload()
|
||||
```
|
||||
|
||||
By default, the dataset is uploaded to the ClearML File Server. The dataset's destination can be changed by specifying the
|
||||
By default, the dataset is uploaded to the ClearML file server. The dataset's destination can be changed by specifying the
|
||||
target storage with the `output_url` parameter of the [`upload`](../../references/sdk/dataset.md#upload) method.
|
||||
|
||||
### Finalizing the Dataset
|
||||
|
@ -685,7 +685,7 @@ task = Task.init(project_name, task_name, output_uri="s3://bucket-name/folder")
|
||||
task = Task.init(project_name, task_name, output_uri="gs://bucket-name/folder")
|
||||
```
|
||||
|
||||
To use Cloud storage with ClearML, configure the storage credentials in your `~/clearml.conf`. For detailed information,
|
||||
To use cloud storage with ClearML, configure the storage credentials in your `~/clearml.conf`. For detailed information,
|
||||
see [ClearML Configuration Reference](configs/clearml_conf.md).
|
||||
|
||||
<a id="pycharm-remote-debug-detect-git"></a>
|
||||
|
@ -18,7 +18,7 @@ class. The storage examples include:
|
||||
|
||||
### Downloading a File
|
||||
|
||||
To download a ZIP file from storage to the `global` cache context, call the [StorageManager.get_local_copy](../../references/sdk/storage.md#storagemanagerget_local_copy)
|
||||
To download a ZIP file from storage to the `global` cache context, call the [`StorageManager.get_local_copy`](../../references/sdk/storage.md#storagemanagerget_local_copy)
|
||||
class method, and specify the destination location as the `remote_url` argument:
|
||||
|
||||
```python
|
||||
@ -49,7 +49,7 @@ class method, and specifying the chunk size in MB (not supported for Azure and G
|
||||
|
||||
### Uploading a File
|
||||
|
||||
To upload a file to storage, call the [StorageManager.upload_file](../../references/sdk/storage.md#storagemanagerupload_file)
|
||||
To upload a file to storage, call the [`StorageManager.upload_file`](../../references/sdk/storage.md#storagemanagerupload_file)
|
||||
class method. Specify the full path of the local file as the `local_file` argument, and the remote URL as the `remote_url`
|
||||
argument.
|
||||
|
||||
@ -59,7 +59,7 @@ StorageManager.upload_file(
|
||||
)
|
||||
```
|
||||
|
||||
Use the `retries parameter` to set the number of times file upload should be retried in case of failure.
|
||||
Use the `retries` parameter to set the number of times file upload should be retried in case of failure.
|
||||
|
||||
By default, the `StorageManager` reports its upload progress to the console every 5MB. You can change this using the
|
||||
[`StorageManager.set_report_upload_chunk_size`](../../references/sdk/storage.md#storagemanagerset_report_upload_chunk_size)
|
||||
@ -68,7 +68,7 @@ class method, and specifying the chunk size in MB (not supported for Azure and G
|
||||
|
||||
### Setting Cache Limits
|
||||
|
||||
To set a limit on the number of files cached, call the [StorageManager.set_cache_file_limit](../../references/sdk/storage.md#storagemanagerset_cache_file_limit)
|
||||
To set a limit on the number of files cached, call the [`StorageManager.set_cache_file_limit`](../../references/sdk/storage.md#storagemanagerset_cache_file_limit)
|
||||
class method and specify the `cache_file_limit` argument as the maximum number of files. This does not limit the cache size,
|
||||
only the number of files.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user