mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-04 05:12:06 +00:00
Small edits (#701)
This commit is contained in:
parent
a38dab6fd0
commit
8c4d299efd
docs
clearml_data
clearml_serving
configs
faq.mdgetting_started/ds
guides
frameworks/scikit-learn
pipeline
reporting
ui
integrations
model_registry.mdpipelines
webapp/datasets
@ -28,8 +28,8 @@ ClearML Data supports multiple ways to create datasets programmatically, which p
|
||||
will inherit its data
|
||||
* [`Dataset.squash()`](#datasetsquash) - Generate a new dataset from by squashing together a set of related datasets
|
||||
|
||||
You can add metadata to your datasets using the `Dataset.set_metadata` method, and access the metadata using the
|
||||
`Dataset.get_metadata` method. See [`set_metadata`](../references/sdk/dataset.md#set_metadata) and [`get_metadata`](../references/sdk/dataset.md#get_metadata).
|
||||
You can add metadata to your datasets using [`Dataset.set_metadata()`](../references/sdk/dataset.md#set_metadata),
|
||||
and access the metadata using [`Dataset.get_metadata()`](../references/sdk/dataset.md#get_metadata).
|
||||
|
||||
### Dataset.create()
|
||||
|
||||
|
@ -102,7 +102,7 @@ hyperparameters. Passing `alias=<dataset_alias_string>` stores the dataset's ID
|
||||
`dataset_alias_string` parameter in the experiment's **CONFIGURATION > HYPERPARAMETERS > Datasets** section. This way
|
||||
you can easily track which dataset the task is using.
|
||||
|
||||
The Dataset's [`get_local_copy`](../../references/sdk/dataset.md#get_local_copy) method returns a path to the cached,
|
||||
[`Dataset.get_local_copy`](../../references/sdk/dataset.md#get_local_copy) returns a path to the cached,
|
||||
downloaded dataset. Then the dataset path is input to PyTorch's `datasets` object.
|
||||
|
||||
The script then trains a neural network to classify images using the dataset created above.
|
@ -241,8 +241,8 @@ You can also specify per-endpoint log frequency with the `clearml-serving` CLI.
|
||||
|
||||
See examples of ClearML Serving with other supported frameworks:
|
||||
|
||||
* [Scikit-Learn](https://github.com/allegroai/clearml-serving/blob/main/examples/sklearn/readme.md) - random data
|
||||
* [Scikit-Learn Model Ensemble](https://github.com/allegroai/clearml-serving/blob/main/examples/ensemble/readme.md) - random data
|
||||
* [scikit-learn](https://github.com/allegroai/clearml-serving/blob/main/examples/sklearn/readme.md) - random data
|
||||
* [scikit-learn Model Ensemble](https://github.com/allegroai/clearml-serving/blob/main/examples/ensemble/readme.md) - random data
|
||||
* [XGBoost](https://github.com/allegroai/clearml-serving/blob/main/examples/xgboost/readme.md) - iris dataset
|
||||
* [LightGBM](https://github.com/allegroai/clearml-serving/blob/main/examples/lightgbm/readme.md) - iris dataset
|
||||
* [PyTorch](https://github.com/allegroai/clearml-serving/blob/main/examples/pytorch/readme.md) - mnist dataset
|
||||
|
@ -416,7 +416,7 @@ match_rules: [
|
||||
image: "nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04"
|
||||
arguments: "-e define=value"
|
||||
match: {
|
||||
script{
|
||||
script {
|
||||
# Optional: must match all requirements (not partial)
|
||||
requirements: {
|
||||
# version selection matching PEP-440
|
||||
|
@ -128,7 +128,7 @@ When a new ClearML Server version is available, the notification is:
|
||||
|
||||
#### How do I find out ClearML version information? <a id="versions"></a>
|
||||
|
||||
ClearML server version information is available in the ClearML webapp Settings page. On the bottom right of the page,
|
||||
ClearML server version information is available in the ClearML WebApp **Settings** page. On the bottom right of the page,
|
||||
it says **Version**, followed by three numbers: the web application version, the API server version, and the API version.
|
||||
|
||||

|
||||
|
@ -115,7 +115,7 @@ under the "Input Models" section.
|
||||
Check out model snapshots examples for [TensorFlow](https://github.com/allegroai/clearml/blob/master/examples/frameworks/tensorflow/tensorflow_mnist.py),
|
||||
[PyTorch](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_mnist.py),
|
||||
[Keras](https://github.com/allegroai/clearml/blob/master/examples/frameworks/keras/keras_tensorboard.py),
|
||||
[Scikit-Learn](https://github.com/allegroai/clearml/blob/master/examples/frameworks/scikit-learn/sklearn_joblib_example.py).
|
||||
[scikit-learn](https://github.com/allegroai/clearml/blob/master/examples/frameworks/scikit-learn/sklearn_joblib_example.py).
|
||||
|
||||
#### Loading Models
|
||||
Loading a previously trained model is quite similar to loading artifacts.
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Scikit-Learn with Joblib
|
||||
title: scikit-learn with Joblib
|
||||
---
|
||||
|
||||
The [sklearn_joblib_example.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/scikit-learn/sklearn_joblib_example.py)
|
||||
|
@ -50,7 +50,7 @@ The sections below describe in more detail what happens in the controller task a
|
||||
1. Build the pipeline (see [PipelineController.add_step](../../references/sdk/automation_controller_pipelinecontroller.md#add_step)
|
||||
method for complete reference):
|
||||
|
||||
The pipeline's [first step](#step-1---downloading-the-datae) uses the pre-existing task
|
||||
The pipeline's [first step](#step-1---downloading-the-data) uses the pre-existing task
|
||||
`pipeline step 1 dataset artifact` in the `examples` project. The step uploads local data and stores it as an artifact.
|
||||
|
||||
```python
|
||||
|
@ -27,7 +27,7 @@ Logger.current_logger().report_surface(
|
||||
zaxis="title Z",
|
||||
)
|
||||
```
|
||||
Visualize the reported surface plot in **PLOTS**.
|
||||
View the reported surface plot in **PLOTS**.
|
||||
|
||||

|
||||
|
||||
@ -49,5 +49,5 @@ Logger.current_logger().report_scatter3d(
|
||||
)
|
||||
```
|
||||
|
||||
Visualize the reported 3D scatter plot in **PLOTS**.
|
||||
View the reported 3D scatter plot in **PLOTS**.
|
||||

|
||||
|
@ -17,8 +17,8 @@ In the ``clearml`` GitHub repository, this example includes a clickable icon to
|
||||
|
||||
## Scalars
|
||||
|
||||
To reports scalars, call the [Logger.report_scalar](../../references/sdk/logger.md#report_scalar)
|
||||
method. The scalar plots appear in the **web UI** in **SCALARS**.
|
||||
To reports scalars, call [Logger.report_scalar()](../../references/sdk/logger.md#report_scalar).
|
||||
The scalar plots appear in the **web UI** in **SCALARS**.
|
||||
|
||||
```python
|
||||
# report two scalar series on two different graphs
|
||||
@ -44,7 +44,7 @@ Plots appear in **PLOTS**.
|
||||
|
||||
### 2D Plots
|
||||
|
||||
Report 2D scatter plots by calling the [Logger.report_scatter2d](../../references/sdk/logger.md#report_scatter2d) method.
|
||||
Report 2D scatter plots by calling [Logger.report_scatter2d()](../../references/sdk/logger.md#report_scatter2d).
|
||||
Use the `mode` parameter to plot data points as markers, or both lines and markers.
|
||||
|
||||
```python
|
||||
@ -67,7 +67,7 @@ logger.report_scatter2d(
|
||||
|
||||
### 3D Plots
|
||||
|
||||
To plot a series as a 3D scatter plot, use the [Logger.report_scatter3d](../../references/sdk/logger.md#report_scatter3d) method.
|
||||
To plot a series as a 3D scatter plot, use [Logger.report_scatter3d()](../../references/sdk/logger.md#report_scatter3d).
|
||||
|
||||
```python
|
||||
# report 3d scatter plot
|
||||
@ -85,8 +85,7 @@ logger.report_scatter3d(
|
||||
|
||||

|
||||
|
||||
To plot a series as a surface plot, use the [Logger.report_surface](../../references/sdk/logger.md#report_surface)
|
||||
method.
|
||||
To plot a series as a surface plot, use [Logger.report_surface()](../../references/sdk/logger.md#report_surface).
|
||||
|
||||
```python
|
||||
# report 3d surface
|
||||
|
@ -25,8 +25,7 @@ output_model = OutputModel(task=task)
|
||||
|
||||
## Label Enumeration
|
||||
|
||||
Set the model's label enumeration using the [`OutputModel.update_labels`](../../references/sdk/model_outputmodel.md#update_labels)
|
||||
method.
|
||||
Set the model's label enumeration using [`OutputModel.update_labels()`](../../references/sdk/model_outputmodel.md#update_labels).
|
||||
|
||||
```python
|
||||
labels = {"background": 0, "cat": 1, "dog": 2}
|
||||
@ -34,8 +33,8 @@ output_model.update_labels(labels)
|
||||
```
|
||||
|
||||
## Registering Models
|
||||
Register a previously trained model using the [`OutputModel.update_weights`](../../references/sdk/model_outputmodel.md#update_weights)
|
||||
method. The example code uses a model stored in S3.
|
||||
Register a previously trained model using [`OutputModel.update_weights()`](../../references/sdk/model_outputmodel.md#update_weights).
|
||||
The example code uses a model stored in S3.
|
||||
|
||||
```python
|
||||
# Manually log a model file, which will have the labels connected above
|
||||
|
@ -51,7 +51,7 @@ The experiments table allows filtering experiments by experiment name, type, and
|
||||
* **Aborted** - The experiment ran and was manually or programmatically terminated.
|
||||
* **Published** - The experiment is not running, it is preserved as read-only.
|
||||
|
||||
## Step 3: Hide the Defaults Column
|
||||
## Step 3: Hide the Default Columns
|
||||
|
||||
Customize the columns on the tracking leaderboard by hiding any of the default columns shown below.
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Scikit-Learn
|
||||
title: scikit-learn
|
||||
---
|
||||
|
||||
:::tip
|
||||
@ -7,7 +7,7 @@ If you are not already using ClearML, see [Getting Started](../getting_started/d
|
||||
instructions.
|
||||
:::
|
||||
|
||||
ClearML integrates seamlessly with [Scikit-Learn](https://scikit-learn.org/stable/), automatically logging models created
|
||||
ClearML integrates seamlessly with [scikit-learn](https://scikit-learn.org/stable/), automatically logging models created
|
||||
with `joblib`.
|
||||
|
||||
All you have to do is simply add two lines of code to your scikit-learn script:
|
||||
@ -73,8 +73,8 @@ See [Explicit Reporting Tutorial](../guides/reporting/explicit_reporting.md).
|
||||
|
||||
Take a look at ClearML's scikit-learn examples. The examples use scikit-learn and ClearML in different configurations with
|
||||
additional tools, like Matplotlib:
|
||||
* [Scikit-Learn with Joblib](../guides/frameworks/scikit-learn/sklearn_joblib_example.md) - Demonstrates ClearML automatically logging the models created with joblib and a scatter plot created by Matplotlib.
|
||||
* [Scikit-Learn with Matplotlib](../guides/frameworks/scikit-learn/sklearn_matplotlib_example.md) - Demonstrates ClearML automatically logging scatter diagrams created with Matplotlib.
|
||||
* [scikit-learn with Joblib](../guides/frameworks/scikit-learn/sklearn_joblib_example.md) - Demonstrates ClearML automatically logging the models created with joblib and a scatter plot created by Matplotlib.
|
||||
* [scikit-learn with Matplotlib](../guides/frameworks/scikit-learn/sklearn_matplotlib_example.md) - Demonstrates ClearML automatically logging scatter diagrams created with Matplotlib.
|
||||
|
||||
|
||||
## Remote Execution
|
||||
|
@ -28,7 +28,7 @@ All you have to do is install and set up ClearML:
|
||||
That’s it! In every training run from now on, the ClearML experiment
|
||||
manager will capture:
|
||||
* Source code and uncommitted changes
|
||||
* Hyperparameters - PyTorch trainer [parameters](https://huggingface.co/docs/transformers/v4.34.1/en/main_classes/trainer#transformers.TrainingArguments),
|
||||
* Hyperparameters - PyTorch trainer [parameters](https://huggingface.co/docs/transformers/v4.34.1/en/main_classes/trainer#transformers.TrainingArguments)
|
||||
and TensorFlow definitions
|
||||
* Installed packages
|
||||
* Model files (make sure the `CLEARML_LOG_MODEL` environment variable is set to `True`)
|
||||
|
@ -35,7 +35,7 @@ continue to train and test new model versions.
|
||||
ClearML supports automatic and manual registration of models to the model catalog.
|
||||
|
||||
### Automatic Logging
|
||||
ClearML automatically logs models created/loaded through popular frameworks like TensorFlow or Scikit-Learn; all you
|
||||
ClearML automatically logs models created/loaded through popular frameworks like TensorFlow or scikit-learn; all you
|
||||
need to do is [instantiate a ClearML Task](clearml_sdk/task_sdk.md#task-creation) in your code. ClearML stores the
|
||||
framework's training results as output models.
|
||||
|
||||
|
@ -52,7 +52,10 @@ For files, call `connect_configuration()` before reading the configuration file.
|
||||
path.
|
||||
|
||||
```python
|
||||
config_file = pipe.connect_configuration(configuration=config_file_path, name="My Configuration", description="configuration for pipeline")
|
||||
config_file = pipe.connect_configuration(
|
||||
configuration=config_file_path,
|
||||
name="My Configuration", description="configuration for pipeline"
|
||||
)
|
||||
my_params = json.load(open(config_file,'rt'))
|
||||
```
|
||||
|
||||
|
@ -116,7 +116,7 @@ clicking the checkbox in the top left corner of the list.
|
||||
Click the checkbox in the top left corner of the list to select all items currently visible.
|
||||
|
||||
An extended bulk selection tool is available through the down arrow next to the checkbox in the top left corner, enabling selecting items beyond the items currently on-screen:
|
||||
* All - Select all versions in the dataset
|
||||
* None - Clear selection
|
||||
* Filtered - Select all versions in the dataset that match the current active filters
|
||||
* **All** - Select all versions in the dataset
|
||||
* **None** - Clear selection
|
||||
* **Filtered** - Select all versions in the dataset that match the current active filters
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user