Small edits (#901)

This commit is contained in:
pollfly 2024-08-12 16:04:50 +03:00 committed by GitHub
parent 3021efd45c
commit 8b94fa6c1a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 67 additions and 58 deletions

View File

@ -362,7 +362,7 @@ Your firewall may be preventing the connection. Try one of the following solutio
* Disable certificate verification
:::warning
For security reasons, it is not recommended to disable certificate verification
For security reasons, it is not recommended to disable certificate verification.
:::
1. Upgrade ClearML to the current version:
```

View File

@ -103,7 +103,7 @@ ClearML can be configured to upload artifacts to any of the supported types of s
folders, AWS S3 buckets, Google Cloud Storage, and Azure Storage. For more information, see [Storage](../integrations/storage.md).
:::note Debug Sample Storage
Debug samples are handled differently, see [`Logger.set_default_upload_destination`](../references/sdk/logger.md#set_default_upload_destination)
Debug samples are handled differently, see [`Logger.set_default_upload_destination`](../references/sdk/logger.md#set_default_upload_destination).
:::
#### Accessing Artifacts

View File

@ -6,7 +6,7 @@ The [execute_remotely_example](https://github.com/allegroai/clearml/blob/master/
script demonstrates the use of the [`Task.execute_remotely`](../../references/sdk/task.md#execute_remotely) method.
:::note
Make sure to have at least one [ClearML Agent](../../clearml_agent.md) running and assigned to listen to the `default` queue
Make sure to have at least one [ClearML Agent](../../clearml_agent.md) running and assigned to listen to the `default` queue:
```
clearml-agent daemon --queue default
```

View File

@ -41,7 +41,7 @@ script.
```
:::tip
If the container will not make use of a GPU, add the `--cpu-only` flag
If the container will not make use of a GPU, add the `--cpu-only` flag.
:::
This command will create a Docker container, set up with the execution environment for this experiment in the

View File

@ -44,7 +44,7 @@ clearml-agent build --id <TASK_ID> --docker --target new_docker
```
:::tip
If the container will not make use of a GPU, add the `--cpu-only` flag
If the container will not make use of a GPU, add the `--cpu-only` flag.
:::
This will create a container with the specified task's execution environment in the `--target` folder.
@ -72,7 +72,7 @@ Make use of the container you've just built by having a ClearML agent make use o
```
:::tip
If the agent will not make use of a GPU, add the `--cpu-only` flag
If the agent will not make use of a GPU, add the `--cpu-only` flag.
:::
This agent will pull the enqueued task and run it using the `new_docker` image to create the execution environment.

View File

@ -45,7 +45,7 @@ Task.current_task().connect_label_enumeration(enumeration)
:::note Directly Setting Model Enumeration
You can set a model's label enumeration directly using the [`OutputModel.update_labels`](../../../references/sdk/model_outputmodel.md#update_labels)
method
method.
:::
## Model Configuration

View File

@ -35,7 +35,7 @@ This sets the following arguments:
:::note
Enter a project name using `--project <name>`. If no project is input, the default project
name is "DevOps"
name is `DevOps`.
:::
After launching the command, the `clearml-agent` listening to the `default` queue spins a remote Jupyter environment with

View File

@ -23,8 +23,8 @@ The scalar plots appear in the **web UI** in **SCALARS**.
```python
# report two scalar series on two different graphs
for i in range(10):
logger.report_scalar("graph A", "series A", iteration=i, value=1./(i+1))
logger.report_scalar("graph B", "series B", iteration=i, value=10./(i+1))
logger.report_scalar(title="graph A", series="series A", iteration=i, value=1./(i+1))
logger.report_scalar(title="graph B", series="series B", iteration=i, value=10./(i+1))
```
![Separate scalar plots](../../img/colab_explicit_reporting_01.png)
@ -32,8 +32,8 @@ for i in range(10):
```python
# report two scalar series on the same graph
for i in range(10):
logger.report_scalar("unified graph", "series A", iteration=i, value=1./(i+1))
logger.report_scalar("unified graph", "series B", iteration=i, value=10./(i+1))
logger.report_scalar(title="unified graph", series="series A", iteration=i, value=1./(i+1))
logger.report_scalar(title="unified graph", series="series B", iteration=i, value=10./(i+1))
```
![Unified scalar plots](../../img/colab_explicit_reporting_02.png)

View File

@ -15,15 +15,15 @@ When the script runs, it creates an experiment named `html samples reporting` in
## Reporting HTML URLs
Report HTML by URL, using the [Logger.report_media](../../references/sdk/logger.md#report_media) method's `url` parameter.
Report HTML by URL using [`Logger.report_media()`](../../references/sdk/logger.md#report_media)'s `url` parameter.
See the example script's [report_html_url](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L16)
See the example script's [`report_html_url`](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L16)
function, which reports the ClearML documentation's home page.
```python
Logger.current_logger().report_media(
"html",
"url_html",
title="html",
series="url_html",
iteration=iteration,
url="https://clear.ml/docs/latest/docs/index.html"
)
@ -39,20 +39,23 @@ Report the following using the `Logger.report_media` parameter method `local_pat
### Interactive HTML
See the example script's [report_html_periodic_table](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L26) function, which reports a file created from Bokeh sample data.
See the example script's [`report_html_periodic_table`](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L26) function, which reports a file created from Bokeh sample data.
```python
Logger.current_logger().report_media(
"html", "periodic_html", iteration=iteration, local_path="periodic.html"
title="html",
series="periodic_html",
iteration=iteration,
local_path="periodic.html"
)
```
### Bokeh GroupBy HTML
See the example script's [report_html_groupby](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L117) function, which reports a Pandas GroupBy with nested HTML, created from Bokeh sample data.
See the example script's [`report_html_groupby`](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L117) function, which reports a Pandas GroupBy with nested HTML, created from Bokeh sample data.
```python
Logger.current_logger().report_media(
"html",
"pandas_groupby_nested_html",
title="html",
series="pandas_groupby_nested_html",
iteration=iteration,
local_path="bar_pandas_groupby_nested.html",
)
@ -60,20 +63,26 @@ Logger.current_logger().report_media(
### Bokeh Graph HTML
See the example script's [report_html_graph](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L162) function, which reports a Bokeh plot created from Bokeh sample data.
See the example script's [`report_html_graph`](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L162) function, which reports a Bokeh plot created from Bokeh sample data.
```python
Logger.current_logger().report_media(
"html", "Graph_html", iteration=iteration, local_path="graph.html"
title="html",
series="Graph_html",
iteration=iteration,
local_path="graph.html"
)
```
### Bokeh Image HTML
See the example script's [report_html_image](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L195) function, which reports an image created from Bokeh sample data.
See the example script's [`report_html_image`](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L195) function, which reports an image created from Bokeh sample data.
```python
Logger.current_logger().report_media(
"html", "Spectral_html", iteration=iteration, local_path="image.html"
title="html",
series="Spectral_html",
iteration=iteration,
local_path="image.html"
)
```

View File

@ -22,17 +22,17 @@ Report images using several formats by calling [`Logger.report_image()`](../../r
```python
# report image as float image
m = np.eye(256, 256, dtype=np.float)
Logger.current_logger().report_image("image", "image float", iteration=iteration, image=m)
Logger.current_logger().report_image(title="image", series="image float", iteration=iteration, image=m)
# report image as uint8
m = np.eye(256, 256, dtype=np.uint8) * 255
Logger.current_logger().report_image("image", "image uint8", iteration=iteration, image=m)
Logger.current_logger().report_image(title="image", series="image uint8", iteration=iteration, image=m)
# report image as uint8 RGB
m = np.concatenate((np.atleast_3d(m), np.zeros((256, 256, 2), dtype=np.uint8)), axis=2)
Logger.current_logger().report_image(
"image",
"image color red",
title="image",
series="image color red",
iteration=iteration,
image=m
)
@ -40,8 +40,8 @@ Logger.current_logger().report_image(
# report PIL Image object
image_open = Image.open(os.path.join("data_samples", "picasso.jpg"))
Logger.current_logger().report_image(
"image",
"image PIL",
title="image",
series="image PIL",
iteration=iteration,
image=image_open
)

View File

@ -26,8 +26,8 @@ df = pd.DataFrame(
)
df.index.name = "id"
Logger.current_logger().report_table(
"table pd",
"PD with index",
title="table pd",
series="PD with index",
iteration=iteration,
table_plot=df
)
@ -43,8 +43,8 @@ Report CSV files by providing the URL location of the CSV file in the `url` para
# Report table - CSV from path
csv_url = "https://raw.githubusercontent.com/plotly/datasets/master/Mining-BTC-180.csv"
Logger.current_logger().report_table(
"table csv",
"remote csv",
title="table csv",
series="remote csv",
iteration=iteration,
url=csv_url
)

View File

@ -16,19 +16,19 @@ To report more than one series on the same plot, use the same `title` argument.
# report two scalar series on the same graph
for i in range(100):
Logger.current_logger().report_scalar(
"unified graph", "series A", iteration=i, value=1./(i+1)
title="unified graph", series="series A", iteration=i, value=1./(i+1)
)
Logger.current_logger().report_scalar(
"unified graph", "series B", iteration=i, value=10./(i+1)
title="unified graph", series="series B", iteration=i, value=10./(i+1)
)
# report two scalar series on two different graphs
for i in range(100):
Logger.current_logger().report_scalar(
"graph A", "series A", iteration=i, value=1./(i+1)
title="graph A", series="series A", iteration=i, value=1./(i+1)
)
Logger.current_logger().report_scalar(
"graph B", "series B", iteration=i, value=10./(i+1)
title="graph B", series="series B", iteration=i, value=10./(i+1)
)
```

View File

@ -23,8 +23,8 @@ To report more than one series on the same plot, use same the `title` argument.
# report a single histogram
histogram = np.random.randint(10, size=10)
Logger.current_logger().report_histogram(
"single_histogram",
"random histogram",
title="single_histogram",
series="random histogram",
iteration=iteration,
values=histogram,
xaxis="title x",
@ -35,8 +35,8 @@ Logger.current_logger().report_histogram(
histogram1 = np.random.randint(13, size=10)
histogram2 = histogram * 0.75
Logger.current_logger().report_histogram(
"two_histogram",
"series 1",
title="two_histogram",
series="series 1",
iteration=iteration,
values=histogram1,
xaxis="title x",
@ -65,8 +65,8 @@ Report confusion matrices by calling [`Logger.report_confusion_matrix()`](../../
# report confusion matrix
confusion = np.random.randint(10, size=(10, 10))
Logger.current_logger().report_confusion_matrix(
"example_confusion",
"ignored",
title="example_confusion",
series="ignored",
iteration=iteration,
matrix=confusion,
xaxis="title X",
@ -79,8 +79,8 @@ Logger.current_logger().report_confusion_matrix(
```python
# report confusion matrix with 0,0 is at the top left
Logger.current_logger().report_confusion_matrix(
"example_confusion_0_0_at_top",
"ignored",
title="example_confusion_0_0_at_top",
series="ignored",
iteration=iteration,
matrix=confusion,
xaxis="title X",
@ -101,8 +101,8 @@ scatter2d = np.hstack(
# report 2d scatter plot with lines
Logger.current_logger().report_scatter2d(
"example_scatter",
"series_xy",
title="example_scatter",
series="series_xy",
iteration=iteration,
scatter=scatter2d,
xaxis="title x",
@ -111,8 +111,8 @@ Logger.current_logger().report_scatter2d(
# report 2d scatter plot with markers
Logger.current_logger().report_scatter2d(
"example_scatter",
"series_markers",
title="example_scatter",
series="series_markers",
iteration=iteration,
scatter=scatter2d,
xaxis="title x",
@ -122,8 +122,8 @@ Logger.current_logger().report_scatter2d(
# report 2d scatter plot with lines and markers
Logger.current_logger().report_scatter2d(
"example_scatter",
"series_lines+markers",
title="example_scatter",
series="series_lines+markers",
iteration=iteration,
scatter=scatter2d,
xaxis="title x",

View File

@ -18,7 +18,7 @@ The Slack API token and channel you create are required to configure the Slack a
1. Login to your Slack account.
1. Go to [https://api.slack.com/apps/new](https://api.slack.com/apps/new).
1. In **App Name**, enter an app name; for example, "ClearML Bot".
1. In **App Name**, enter an app name. For example, "ClearML Bot".
1. In **Development Slack Workspace**, select a workspace.
1. Click **Create App**.
1. In **Basic Information**, under **Display Information**, complete the following:
@ -31,7 +31,7 @@ The Slack API token and channel you create are required to configure the Slack a
* **channels:read**
* **chat:write**
1. In **OAuth Tokens & Redirect URLs**:
1. Click **Install App to Workspace**
1. Click **Install App to Workspace**.
1. In the confirmation dialog, click **Allow**.
1. Click **Copy** to copy the **Bot User OAuth Access Token**.

View File

@ -137,7 +137,7 @@ task = Task.init(
# Load a model
model_variant = "yolov8n"
# Log "model_variant" parameter to task
task.set_parameter("model_variant", model_variant)
task.set_parameter(name="model_variant", value=model_variant)
# Load the YOLOv8 model
model = YOLO(f'{model_variant}.pt')

View File

@ -3,7 +3,7 @@ title: Hyperparameter Optimization
---
:::info Pro Plan Offering
The ClearML HPO App is available under the ClearML Pro plan
The ClearML HPO App is available under the ClearML Pro plan.
:::
The Hyperparameter Optimization Application finds the set of parameter values that optimize a specific metric(s) for your

View File

@ -3,7 +3,7 @@ title: VS Code
---
:::important Enterprise Feature
The VS Code application is available under the ClearML Enterprise plan
The VS Code application is available under the ClearML Enterprise plan.
:::
The VS Code UI application allows you to launch a remote VS Code session on a machine that better meets resource needs.