mirror of
https://github.com/clearml/clearml-docs
synced 2025-06-26 18:17:44 +00:00
Small edits (#270)
This commit is contained in:
@@ -35,10 +35,12 @@ Integrate ClearML with the following steps:
|
||||
|
||||
For example, attach the `OutputHandler` to log training loss at each iteration:
|
||||
```python
|
||||
clearml_logger.attach(trainer,
|
||||
log_handler=OutputHandler(tag="training",
|
||||
output_transform=lambda loss: {"loss": loss}),
|
||||
event_name=Events.ITERATION_COMPLETED)
|
||||
clearml_logger.attach(
|
||||
trainer,
|
||||
log_handler=OutputHandler(tag="training",
|
||||
output_transform=lambda loss: {"loss": loss}),
|
||||
event_name=Events.ITERATION_COMPLETED
|
||||
)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
@@ -57,19 +59,23 @@ To log scalars, ignite engine's output and / or metrics, use the `OutputHandler`
|
||||
|
||||
* Log training loss at each iteration:
|
||||
```python
|
||||
clearml_logger.attach(trainer,
|
||||
clearml_logger.attach(
|
||||
trainer,
|
||||
log_handler=OutputHandler(tag="training",
|
||||
output_transform=lambda loss: {"loss": loss}),
|
||||
event_name=Events.ITERATION_COMPLETED)
|
||||
event_name=Events.ITERATION_COMPLETED
|
||||
)
|
||||
```
|
||||
|
||||
* Log metrics for training:
|
||||
|
||||
```python
|
||||
clearml_logger.attach(train_evaluator,
|
||||
log_handler=OutputHandler(tag="training",
|
||||
log_handler=OutputHandler(
|
||||
tag="training",
|
||||
metric_names=["nll", "accuracy"],
|
||||
global_step_transform=global_step_from_engine(trainer)),
|
||||
global_step_transform=global_step_from_engine(trainer)
|
||||
),
|
||||
event_name=Events.EPOCH_COMPLETED)
|
||||
```
|
||||
|
||||
@@ -77,17 +83,20 @@ clearml_logger.attach(train_evaluator,
|
||||
|
||||
```python
|
||||
clearml_logger.attach(evaluator,
|
||||
log_handler=OutputHandler(tag="validation",
|
||||
log_handler=OutputHandler(
|
||||
tag="validation",
|
||||
metric_names=["nll", "accuracy"],
|
||||
global_step_transform=global_step_from_engine(trainer)),
|
||||
global_step_transform=global_step_from_engine(trainer)
|
||||
),
|
||||
event_name=Events.EPOCH_COMPLETED)
|
||||
```
|
||||
|
||||
To log optimizer parameters, use the `attach_opt_params_handler` method:
|
||||
```python
|
||||
# Attach the logger to the trainer to log optimizer's parameters, e.g., learning rate at each iteration
|
||||
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
|
||||
clearml_logger.attach_opt_params_handler(
|
||||
trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer
|
||||
)
|
||||
```
|
||||
|
||||
### Model Weights
|
||||
@@ -97,9 +106,11 @@ To log model weights as scalars, use `WeightsScalarHandler`:
|
||||
```python
|
||||
from ignite.contrib.handlers.clearml_logger import WeightsScalarHandler
|
||||
|
||||
clearml_logger.attach(trainer,
|
||||
clearml_logger.attach(
|
||||
trainer,
|
||||
log_handler=WeightsScalarHandler(model, reduction=torch.norm),
|
||||
event_name=Events.ITERATION_COMPLETED)
|
||||
event_name=Events.ITERATION_COMPLETED
|
||||
)
|
||||
```
|
||||
|
||||
To log model weights as histograms, use `WeightsHistHandler`:
|
||||
@@ -107,9 +118,11 @@ To log model weights as histograms, use `WeightsHistHandler`:
|
||||
```python
|
||||
from ignite.contrib.handlers.clearml_logger import WeightsHistHandler
|
||||
|
||||
clearml_logger.attach(trainer,
|
||||
clearml_logger.attach(
|
||||
trainer,
|
||||
log_handler=WeightsHistHandler(model),
|
||||
event_name=Events.ITERATION_COMPLETED)
|
||||
event_name=Events.ITERATION_COMPLETED
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user