Small edits (#270)

This commit is contained in:
pollfly
2022-06-19 12:35:31 +03:00
committed by GitHub
parent 472f2c04a4
commit 780c9dbbd3
3 changed files with 47 additions and 210 deletions

View File

@@ -35,10 +35,12 @@ Integrate ClearML with the following steps:
For example, attach the `OutputHandler` to log training loss at each iteration:
```python
clearml_logger.attach(trainer,
log_handler=OutputHandler(tag="training",
output_transform=lambda loss: {"loss": loss}),
event_name=Events.ITERATION_COMPLETED)
clearml_logger.attach(
trainer,
log_handler=OutputHandler(tag="training",
output_transform=lambda loss: {"loss": loss}),
event_name=Events.ITERATION_COMPLETED
)
```
### Parameters
@@ -57,19 +59,23 @@ To log scalars, ignite engine's output and / or metrics, use the `OutputHandler`
* Log training loss at each iteration:
```python
clearml_logger.attach(trainer,
clearml_logger.attach(
trainer,
log_handler=OutputHandler(tag="training",
output_transform=lambda loss: {"loss": loss}),
event_name=Events.ITERATION_COMPLETED)
event_name=Events.ITERATION_COMPLETED
)
```
* Log metrics for training:
```python
clearml_logger.attach(train_evaluator,
log_handler=OutputHandler(tag="training",
log_handler=OutputHandler(
tag="training",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)),
global_step_transform=global_step_from_engine(trainer)
),
event_name=Events.EPOCH_COMPLETED)
```
@@ -77,17 +83,20 @@ clearml_logger.attach(train_evaluator,
```python
clearml_logger.attach(evaluator,
log_handler=OutputHandler(tag="validation",
log_handler=OutputHandler(
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)),
global_step_transform=global_step_from_engine(trainer)
),
event_name=Events.EPOCH_COMPLETED)
```
To log optimizer parameters, use the `attach_opt_params_handler` method:
```python
# Attach the logger to the trainer to log optimizer's parameters, e.g., learning rate at each iteration
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
clearml_logger.attach_opt_params_handler(
trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer
)
```
### Model Weights
@@ -97,9 +106,11 @@ To log model weights as scalars, use `WeightsScalarHandler`:
```python
from ignite.contrib.handlers.clearml_logger import WeightsScalarHandler
clearml_logger.attach(trainer,
clearml_logger.attach(
trainer,
log_handler=WeightsScalarHandler(model, reduction=torch.norm),
event_name=Events.ITERATION_COMPLETED)
event_name=Events.ITERATION_COMPLETED
)
```
To log model weights as histograms, use `WeightsHistHandler`:
@@ -107,9 +118,11 @@ To log model weights as histograms, use `WeightsHistHandler`:
```python
from ignite.contrib.handlers.clearml_logger import WeightsHistHandler
clearml_logger.attach(trainer,
clearml_logger.attach(
trainer,
log_handler=WeightsHistHandler(model),
event_name=Events.ITERATION_COMPLETED)
event_name=Events.ITERATION_COMPLETED
)
```