mirror of
https://github.com/clearml/clearml-docs
synced 2025-01-31 06:27:22 +00:00
Add Dataset alias
explanation (#449)
This commit is contained in:
parent
9fea8f1e33
commit
6df1cd9561
@ -32,6 +32,12 @@ Organizing your datasets into projects by use-case makes it easier to access the
|
||||
If only a project is specified when using [`Dataset.get`](../references/sdk/dataset.md#datasetget), the method returns the
|
||||
most recent dataset in a project. The same is true with tags; if a tag is specified, the method will return the most recent dataset that is labeled with that tag.
|
||||
|
||||
In cases where you use a dataset in a task (e.g. consuming a dataset), you can easily track which dataset the task is
|
||||
using by using `Dataset.get`'s `alias` parameter. Pass `alias=<dataset_alias_string>`, and the task using the dataset
|
||||
will store the dataset’s ID in the `dataset_alias_string` parameter under the task's **CONFIGURATION > HYPERPARAMETERS >
|
||||
Datasets` section.
|
||||
|
||||
|
||||
## Document your Datasets
|
||||
|
||||
Attach informative metrics or debug samples to the Dataset itself. Use the [`get_logger`](../references/sdk/dataset.md#get_logger)
|
||||
|
@ -85,7 +85,8 @@ from clearml import Dataset
|
||||
|
||||
dataset_path = Dataset.get(
|
||||
dataset_name=dataset_name,
|
||||
dataset_project=dataset_project
|
||||
dataset_project=dataset_project,
|
||||
alias="Cifar dataset"
|
||||
).get_local_copy()
|
||||
|
||||
trainset = datasets.CIFAR10(
|
||||
@ -95,7 +96,13 @@ trainset = datasets.CIFAR10(
|
||||
transform=transform
|
||||
)
|
||||
```
|
||||
|
||||
In cases like this, where you use a dataset in a task, you can have the dataset's ID stored in the task’s
|
||||
hyperparameters. Passing `alias=<dataset_alias_string>` stores the dataset’s ID in the
|
||||
`dataset_alias_string` parameter in the experiment's **CONFIGURATION > HYPERPARAMETERS > Datasets** section. This way
|
||||
you can easily track which dataset the task is using.
|
||||
|
||||
The Dataset's [`get_local_copy`](../../references/sdk/dataset.md#get_local_copy) method will return a path to the cached,
|
||||
downloaded dataset. Then we provide the path to Pytorch's dataset object.
|
||||
downloaded dataset. Then we provide the path to PyTorch's dataset object.
|
||||
|
||||
The script then trains a neural network to classify images using the dataset created above.
|
@ -85,7 +85,9 @@ from clearml import Dataset
|
||||
|
||||
dataset_path = Dataset.get(
|
||||
dataset_name=dataset_name,
|
||||
dataset_project=dataset_project).get_local_copy()
|
||||
dataset_project=dataset_project,
|
||||
alias="Cifar dataset"
|
||||
).get_local_copy()
|
||||
|
||||
trainset = datasets.CIFAR10(
|
||||
root=dataset_path,
|
||||
@ -94,6 +96,12 @@ trainset = datasets.CIFAR10(
|
||||
transform=transform
|
||||
)
|
||||
```
|
||||
|
||||
In cases like this, where you use a dataset in a task, you can have the dataset's ID stored in the task’s
|
||||
hyperparameters. Passing `alias=<dataset_alias_string>` stores the dataset’s ID in the
|
||||
`dataset_alias_string` parameter in the experiment's **CONFIGURATION > HYPERPARAMETERS > Datasets** section. This way
|
||||
you can easily track which dataset the task is using.
|
||||
|
||||
The Dataset's [`get_local_copy`](../../references/sdk/dataset.md#get_local_copy) method will return a path to the cached,
|
||||
downloaded dataset. Then we provide the path to Pytorch's dataset object.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user