Edit text classification example (#678)

This commit is contained in:
pollfly 2023-10-02 12:35:09 +03:00 committed by GitHub
parent 83fa8adcd5
commit 5b089c562f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 14 additions and 11 deletions

View File

@ -4,18 +4,25 @@ title: Text Classification - Jupyter Notebook
The example [text_classification_AG_NEWS.ipynb](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/notebooks/text/text_classification_AG_NEWS.ipynb)
demonstrates using Jupyter Notebook for ClearML, and the integration of ClearML into code which trains a network
to classify text in the `torchtext` [AG_NEWS](https://pytorch.org/text/stable/datasets.html#ag-news) dataset, and then applies the model to predict the classification of sample text. ClearML automatically logs the scalar and console output by calling TensorBoard methods. The example code explicitly logs parameters to the Task. When the script runs, it creates an experiment named `text classifier` in the `Text Example` project.
to classify text in the `torchtext` [AG_NEWS](https://pytorch.org/text/stable/datasets.html#ag-news) dataset, and then applies the model to predict the classification of sample text.
ClearML automatically logs the scalars and text samples reported with TensorBoard methods. The example code explicitly logs parameters to the Task. When the script runs, it creates an experiment named `text classifier` in the `Text Example` project.
## Scalars
Accuracy, learning rate, and training loss appear in **SCALARS**, along with the resource utilization plots, which are titled **:monitor: machine**.
![image](../../../../../img/text_classification_AG_NEWS_03.png)
![Scalars](../../../../../img/text_classification_AG_NEWS_03.png)
## Debug Samples
ClearML automatically logs the text samples reported to TensorBoard. They are displayed in the experiment's **DEBUG SAMPLES**.
![Debug samples](../../../../../img/text_classification_AG_NEWS_04.png)
## Hyperparameters
ClearML automatically logs the command line options, because the example code uses `argparse`. A parameter dictionary
is logged by connecting it to the Task using [`Task.connect()`](../../../../../references/sdk/task.md#connect).
A parameter dictionary is logged by connecting it to the Task using [`Task.connect()`](../../../../../references/sdk/task.md#connect):
```python
configuration_dict = {
@ -25,17 +32,13 @@ configuration_dict = {
configuration_dict = task.connect(configuration_dict)
```
Command line options appear in **CONFIGURATION** **>** **HYPERPARAMETERS** **>** **Args**.
The parameters are displayed in the experiment's **CONFIGURATION** **>** **HYPERPARAMETERS** **>** **General** section.
![image](../../../../../img/text_classification_AG_NEWS_01.png)
Parameter dictionaries appear in the **General** subsection.
![image](../../../../../img/text_classification_AG_NEWS_01a.png)
![Hyperparameters](../../../../../img/text_classification_AG_NEWS_01.png)
## Console
Text printed to the console for training progress, as well as all other console output, appear in **CONSOLE**.
![image](../../../../../img/text_classification_AG_NEWS_02.png)
![Console](../../../../../img/text_classification_AG_NEWS_02.png)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

After

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 305 KiB