diff --git a/docs/clearml_data/clearml_data_sdk.md b/docs/clearml_data/clearml_data_sdk.md index 9e5ce96e..bcd93724 100644 --- a/docs/clearml_data/clearml_data_sdk.md +++ b/docs/clearml_data/clearml_data_sdk.md @@ -260,7 +260,7 @@ Dataset files must be uploaded before a dataset is [finalized](#finalizing-a-dat ## Finalizing a Dataset -Use the [`Dataset.finalize`](../references/sdk/dataset.md#finalize) method to close the current dataset. This marks the +Use [`Dataset.finalize()`](../references/sdk/dataset.md#finalize) to close the current dataset. This marks the dataset task as *Completed*, at which point, the dataset can no longer be modified. Before closing a dataset, its files must first be [uploaded](#uploading-files). @@ -268,7 +268,7 @@ Before closing a dataset, its files must first be [uploaded](#uploading-files). ## Syncing Local Storage -Use the [`Dataset.sync_folder`](../references/sdk/dataset.md#sync_folder) method in order to update a dataset according +Use [`Dataset.sync_folder()`](../references/sdk/dataset.md#sync_folder) in order to update a dataset according to a specific folder's content changes. Specify the folder to sync with the `local_path` parameter (the method assumes all files within the folder and recursive). This method is useful in the case where there's a single point of truth, either a local or network folder, that gets updated periodically. @@ -276,7 +276,7 @@ The folder changes will be reflected in a new dataset version. This method saves update (add / remove) files in a dataset. ## Deleting Datasets -Delete a dataset using the [`Dataset.delete`](../references/sdk/dataset.md#datasetdelete) class method. Input any of the +Delete a dataset using [`Dataset.delete()`](../references/sdk/dataset.md#datasetdelete) method. Input any of the attributes of the dataset(s) you want to delete, including ID, project name, version, and/or dataset name. Multiple datasets matching the query will raise an exception, unless you pass `entire_dataset=True` and `force=True`. In this case, all matching datasets will be deleted. @@ -360,11 +360,11 @@ Note that in offline mode, any methods that require communicating with the serve `finalize()`, `get_local_copy()`, `get()`, `move_to_project()`, etc.). Upload the offline dataset to the ClearML Server using [`Dataset.import_offline_session()`](../references/sdk/dataset.md#datasetimport_offline_session). +In the `session_folder_zip` argument, insert the path to the zip folder containing the dataset. To [upload](#uploading-files) +the dataset's data to network storage, set `upload` to `True`. To [finalize](#finalizing-a-dataset) the dataset, +which will close it and prevent further modifications to the dataset, set `finalize` to `True`. ```python Dataset.import_offline_session(session_folder_zip="", upload=True, finalize=True) ``` -In the `session_folder_zip` argument, insert the path to the zip folder containing the dataset. To [upload](#uploading-files) -the dataset's data to network storage, set `upload` to `True`. To [finalize](#finalizing-a-dataset) the dataset, -which will close it and prevent further modifications to the dataset, set `finalize` to `True`. diff --git a/docs/clearml_data/data_management_examples/data_man_cifar_classification.md b/docs/clearml_data/data_management_examples/data_man_cifar_classification.md index a5a7e7d0..47928932 100644 --- a/docs/clearml_data/data_management_examples/data_man_cifar_classification.md +++ b/docs/clearml_data/data_management_examples/data_man_cifar_classification.md @@ -43,7 +43,7 @@ New dataset created id=ee1c35f60f384e65bc800f42f0aca5ec Where `ee1c35f60f384e65bc800f42f0aca5ec` is the dataset ID. ## Adding Files -Add the files that were just downloaded to the dataset: +Add the [downloaded files](#downloading-the-data) to the dataset: ``` clearml-data add --files diff --git a/docs/guides/advanced/multiple_tasks_single_process.md b/docs/guides/advanced/multiple_tasks_single_process.md index e28b8706..74e9aeed 100644 --- a/docs/guides/advanced/multiple_tasks_single_process.md +++ b/docs/guides/advanced/multiple_tasks_single_process.md @@ -5,9 +5,9 @@ title: Multiple Tasks in Single Process The [multiple_tasks_single_process](https://github.com/allegroai/clearml/blob/master/examples/advanced/multiple_tasks_single_process.py) script demonstrates the capability to log a single script in multiple ClearML tasks. -In order to log a script in multiple tasks, each task needs to be initialized using the [`Task.init`](../../references/sdk/task.md#taskinit) -method with the `task_name` and `project_name` parameters input. Before initializing an additional task in the same script, the -previous task must be manually shut down with the [`close`](../../references/sdk/task.md#close) method. +In order to log a script in multiple tasks, each task needs to be initialized using [`Task.init()`](../../references/sdk/task.md#taskinit) +with the `task_name` and `project_name` parameters input. Before initializing an additional task in the same script, the +previous task must be manually shut down with [`Task.close()`](../../references/sdk/task.md#close). When the script is executed, the console should display the following output: diff --git a/docs/guides/pipeline/pipeline_controller.md b/docs/guides/pipeline/pipeline_controller.md index 264c292e..5fadad6b 100644 --- a/docs/guides/pipeline/pipeline_controller.md +++ b/docs/guides/pipeline/pipeline_controller.md @@ -30,7 +30,7 @@ The sections below describe in more detail what happens in the controller task a ## The Pipeline Controller -1. Create the [pipeline controller](../../references/sdk/automation_controller_pipelinecontroller.md) object. +1. Create the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md) object: ```python pipe = PipelineController( @@ -90,7 +90,7 @@ The sections below describe in more detail what happens in the controller task a The [third step](#step-3---training-the-network) uses the pre-existing task `pipeline step 3 train model` in the `examples` projects. The step uses Step 2's artifacts. -1. Run the pipeline. +1. Run the pipeline: ```python pipe.start() @@ -103,7 +103,7 @@ The sections below describe in more detail what happens in the controller task a The pipeline's first step ([step1_dataset_artifact.py](https://github.com/allegroai/clearml/blob/master/examples/pipeline/step1_dataset_artifact.py)) does the following: -1. Download data using [`StorageManager.get_local_copy`](../../references/sdk/storage.md#storagemanagerget_local_copy) +1. Download data using [`StorageManager.get_local_copy()`](../../references/sdk/storage.md#storagemanagerget_local_copy): ```python # simulate local dataset, download one, so we have something local @@ -111,7 +111,7 @@ does the following: remote_url='https://github.com/allegroai/events/raw/master/odsc20-east/generic/iris_dataset.pkl' ) ``` -1. Store the data as an artifact named `dataset` using [`Task.upload_artifact`](../../references/sdk/task.md#upload_artifact) +1. Store the data as an artifact named `dataset` using [`Task.upload_artifact()`](../../references/sdk/task.md#upload_artifact): ```python # add and upload local file containing our toy dataset task.upload_artifact('dataset', artifact_object=local_iris_pkl) @@ -137,7 +137,7 @@ does the following: ``` 1. Download the data created in the previous step (specified through the `dataset_url` parameter) using - [`StorageManager.get_local_copy`](../../references/sdk/storage.md#storagemanagerget_local_copy) + [`StorageManager.get_local_copy`()](../../references/sdk/storage.md#storagemanagerget_local_copy) ```python iris_pickle = StorageManager.get_local_copy(remote_url=args['dataset_url']) @@ -167,13 +167,13 @@ does the following: task.connect(args) ``` -1. Clone the base task and enqueue it using [`Task.execute_remotely`](../../references/sdk/task.md#execute_remotely). +1. Clone the base task and enqueue it using [`Task.execute_remotely()`](../../references/sdk/task.md#execute_remotely): ```python task.execute_remotely() ``` -1. Access the data created in the previous task. +1. Access the data created in the previous task: ```python dataset_task = Task.get_task(task_id=args['dataset_task_id']) @@ -189,14 +189,14 @@ does the following: **To run the pipeline:** -1. If the pipeline steps tasks do not yet exist, run their code to create the ClearML tasks. +1. If the pipeline steps tasks do not yet exist, run their code to create the ClearML tasks: ```bash python step1_dataset_artifact.py python step2_data_processing.py python step3_train_model.py ``` -1. Run the pipeline controller. +1. Run the pipeline controller: ```bash python pipeline_from_tasks.py diff --git a/docs/guides/pipeline/pipeline_functions.md b/docs/guides/pipeline/pipeline_functions.md index 8fb5cd89..72ebbba7 100644 --- a/docs/guides/pipeline/pipeline_functions.md +++ b/docs/guides/pipeline/pipeline_functions.md @@ -23,7 +23,7 @@ logged as required packages for the pipeline execution step. ## Pipeline Controller -1. Create the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md) object. +1. Create the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md) object: ```python pipe = PipelineController( @@ -98,7 +98,7 @@ logged as required packages for the pipeline execution step. ) ``` -1. Run the pipeline. +1. Run the pipeline: ```python pipe.start() ``` diff --git a/docs/guides/reporting/using_artifacts.md b/docs/guides/reporting/using_artifacts.md index f509f514..8a27e046 100644 --- a/docs/guides/reporting/using_artifacts.md +++ b/docs/guides/reporting/using_artifacts.md @@ -11,14 +11,14 @@ artifact and utilizes it. ## Task 1: Uploading an Artifact -The first task uploads a data file as an artifact using the [`Task.upload_artifact`](../../references/sdk/task.md#upload_artifact) -method, inputting the artifact's name and the location of the file. +The first task uploads a data file as an artifact using [`Task.upload_artifact()`](../../references/sdk/task.md#upload_artifact), +and inputting the artifact's name and the location of the file. ```python task1.upload_artifact(name='data file', artifact_object='data_samples/sample.json') ``` -The task is then closed, using the [`Task.close`](../../references/sdk/task.md#close) method, so another task can be +The task is then closed, using [`Task.close()`](../../references/sdk/task.md#close), so another task can be initialized in the same script. Artifact details (location and size) can be viewed in ClearML's **web UI > experiment details > ARTIFACTS tab > OTHER section**.