Merge branch 'main' of https://github.com/allegroai/clearml-docs into images_4
@ -246,7 +246,7 @@ dataset.get_logger().report_table(
|
||||
title="Raw Dataset Metadata", series="Raw Dataset Metadata", csv="path/to/csv"
|
||||
)
|
||||
|
||||
# Attach a historgram to the table
|
||||
# Attach a histogram to the table
|
||||
dataset.get_logger().report_histogram(
|
||||
title="Class distribution",
|
||||
series="Class distribution",
|
||||
@ -261,7 +261,7 @@ dataset.get_logger().report_histogram(
|
||||
|
||||
To upload the dataset files to network storage, use [`Dataset.upload()`](../references/sdk/dataset.md#upload).
|
||||
|
||||
Use the `output_url` parameter to specify storage target, such as S3 / GS / Azure. For example:
|
||||
Use the `output_url` parameter to specify a storage target, such as S3 / GS / Azure. For example:
|
||||
* A shared folder: `/mnt/share/folder`
|
||||
* S3: `s3://bucket/folder`
|
||||
* Non-AWS S3-like services (such as MinIO): `s3://host_addr:port/bucket`. **Note that port specification is required**.
|
||||
|
@ -30,7 +30,7 @@ the needed files.
|
||||
```
|
||||
|
||||
1. Add a folder. File addition is recursive, so it's enough to point at the folder
|
||||
to captures all files and subfolders:
|
||||
to capture all files and subfolders:
|
||||
|
||||
```bash
|
||||
clearml-data add --files data_samples
|
||||
|
@ -8,7 +8,7 @@ For feature requests or bug reports, see **ClearML** [GitHub issues](https://git
|
||||
|
||||
If you have any questions, post on the **ClearML** [Slack channel](https://joinslack.clear.ml).
|
||||
|
||||
Or, tag your questions on [stackoverflow](https://stackoverflow.com/questions/tagged/clearml) with the **clearml** tag.
|
||||
Or, tag your questions on [Stack Overflow](https://stackoverflow.com/questions/tagged/clearml) with the **clearml** tag.
|
||||
|
||||
You can always find us at [support@clear.ml](mailto:support@clear.ml?subject=ClearML).
|
||||
|
||||
|
@ -127,7 +127,13 @@ Deploying the server requires a minimum of 8 GB of memory, 16 GB is recommended.
|
||||
```
|
||||
sudo chown -R 1000:1000 /opt/clearml
|
||||
```
|
||||
|
||||
|
||||
:::note
|
||||
This assumes the container processes run as UID 1000 and GID 1000. The ownership of `/opt/clearml` must match the
|
||||
UID and GID used inside the container. If the container runs as a different user or group, update the ownership
|
||||
accordingly to ensure they can access the mounted directories.
|
||||
:::
|
||||
|
||||
* macOS:
|
||||
|
||||
```
|
||||
|
@ -33,7 +33,7 @@ has been configured. It is recommended to use an [object storage solution](../in
|
||||
|
||||
## Server Credentials and Secrets
|
||||
|
||||
By default, ClearML Server comes with default values that are designed to allow to set it up quickly and to start working
|
||||
By default, ClearML Server comes with default values designed to allow you to quickly set it up and to start working
|
||||
with the ClearML SDK.
|
||||
|
||||
However, this also means that the **server must be secured** by either preventing any external access, or by changing
|
||||
|
@ -58,83 +58,46 @@ that will have records pointing to the cluster’s ingress controller (see ingre
|
||||
:::
|
||||
|
||||
|
||||
```
|
||||
```yaml
|
||||
imageCredentials:
|
||||
password: "<clearml_enterprise_DockerHub_TOKEN>"
|
||||
|
||||
password: "<clearml_enterprise_DockerHub_TOKEN>"
|
||||
|
||||
clearml:
|
||||
cookieDomain: "<BASE_DOMAIN>"
|
||||
# Set values for improved security
|
||||
apiserverKey: "<GENERATED_API_SERVER_KEY>"
|
||||
apiserverSecret: "<GENERATED_API_SERVER_SECRET>"
|
||||
fileserverKey: "<GENERATED_FILE_SERVER_KEY>"
|
||||
fileserverSecret: "<GENERATED_FILE_SERVER_SECRET>"
|
||||
secureAuthTokenSecret: "<GENERATED_AUTH_TOKEN_SECRET>"
|
||||
testUserKey: "<GENERATED_TEST_USER_KEY>"
|
||||
testUserSecret: "<GENERATED_TEST_USER_SECRET>"
|
||||
|
||||
cookieDomain: "<BASE_DOMAIN>"
|
||||
# Set values for improved security
|
||||
apiserverKey: "<GENERATED_API_SERVER_KEY>"
|
||||
apiserverSecret: "<GENERATED_API_SERVER_SECRET>"
|
||||
fileserverKey: "<GENERATED_FILE_SERVER_KEY>"
|
||||
fileserverSecret: "<GENERATED_FILE_SERVER_SECRET>"
|
||||
secureAuthTokenSecret: "<GENERATED_AUTH_TOKEN_SECRET>"
|
||||
testUserKey: "<GENERATED_TEST_USER_KEY>"
|
||||
testUserSecret: "<GENERATED_TEST_USER_SECRET>"
|
||||
|
||||
apiserver:
|
||||
ingress:
|
||||
enabled: true
|
||||
hostName: "api.<BASE_DOMAIN>"
|
||||
service:
|
||||
type: ClusterIP
|
||||
extraEnvs:
|
||||
- name: CLEARML__services__organization__features__user_management_advanced
|
||||
value: "true"
|
||||
- name: CLEARML__services__auth__ui_features_per_role__user__show_datasets
|
||||
value: "false"
|
||||
- name: CLEARML__services__auth__ui_features_per_role__user__show_orchestration
|
||||
value: "false"
|
||||
- name: CLEARML__services__workers__resource_usages__supervisor_company
|
||||
value: "<SUPERVISOR_TENANT_ID>"
|
||||
- name: CLEARML__secure__credentials__supervisor__role
|
||||
value: "system"
|
||||
- name: CLEARML__secure__credentials__supervisor__allow_login
|
||||
value: "true"
|
||||
- name: CLEARML__secure__credentials__supervisor__user_key
|
||||
value: "<SUPERVISOR_USER_KEY>"
|
||||
- name: CLEARML__secure__credentials__supervisor__user_secret
|
||||
value: "<SUPERVISOR_USER_SECRET>"
|
||||
- name: CLEARML__secure__credentials__supervisor__sec_groups
|
||||
value: "[\"users\", \"admins\", \"queue_admins\"]"
|
||||
- name: CLEARML__secure__credentials__supervisor__email
|
||||
value: "\"<SUPERVISOR_USER_EMAIL>\""
|
||||
- name: CLEARML__apiserver__company__unique_names
|
||||
value: "true"
|
||||
|
||||
ingress:
|
||||
enabled: true
|
||||
hostName: "api.<BASE_DOMAIN>"
|
||||
service:
|
||||
type: ClusterIP
|
||||
|
||||
fileserver:
|
||||
ingress:
|
||||
enabled: true
|
||||
hostName: "file.<BASE_DOMAIN>"
|
||||
service:
|
||||
type: ClusterIP
|
||||
|
||||
ingress:
|
||||
enabled: true
|
||||
hostName: "file.<BASE_DOMAIN>"
|
||||
service:
|
||||
type: ClusterIP
|
||||
|
||||
webserver:
|
||||
ingress:
|
||||
enabled: true
|
||||
hostName: "app.<BASE_DOMAIN>"
|
||||
service:
|
||||
type: ClusterIP
|
||||
|
||||
ingress:
|
||||
enabled: true
|
||||
hostName: "app.<BASE_DOMAIN>"
|
||||
service:
|
||||
type: ClusterIP
|
||||
|
||||
clearmlApplications:
|
||||
enabled: true
|
||||
enabled: true
|
||||
```
|
||||
|
||||
|
||||
The credentials specified in `<SUPERVISOR_USER_KEY>` and `<SUPERVISOR_USER_SECRET>` can be used to log in as the
|
||||
supervisor user from the ClearML Web UI accessible using the URL `app.<BASE_DOMAIN>`.
|
||||
|
||||
|
||||
Note that the `<SUPERVISOR_USER_EMAIL>` value must be explicitly quoted. To do so, put `\"` around the quoted value.
|
||||
For example `"\"email@example.com\""`.
|
||||
|
||||
|
||||
#### Additional Configuration Options
|
||||
##### Fixed Users (Simple Login)
|
||||
|
||||
@ -181,7 +144,7 @@ Substitute all `<PLACEHOLDER>`s with the correct value for your configuration.
|
||||
##### Auth0 Identity Provider
|
||||
|
||||
|
||||
```
|
||||
```yaml
|
||||
apiserver:
|
||||
extraEnvs:
|
||||
- name: CLEARML__secure__login__sso__oauth_client__auth0__client_id
|
||||
@ -202,7 +165,7 @@ apiserver:
|
||||
##### Keycloak Identity Provider
|
||||
|
||||
|
||||
```
|
||||
```yaml
|
||||
apiserver:
|
||||
extraEnvs:
|
||||
- name: CLEARML__secure__login__sso__oauth_client__keycloak__client_id
|
||||
@ -217,8 +180,6 @@ apiserver:
|
||||
value: "<KC_URL>/realms/<REALM_NAME>/protocol/openid-connect/token"
|
||||
- name: CLEARML__services__login__sso__oauth_client__keycloak__idp_logout
|
||||
value: "true"
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
@ -247,24 +208,24 @@ To configure the agent you will need to choose a Redis password and use that whe
|
||||
The Helm Chart must be installed with `overrides.yaml`:
|
||||
|
||||
|
||||
```
|
||||
```yaml
|
||||
imageCredentials:
|
||||
password: "<CLEARML_DOCKERHUB_TOKEN>"
|
||||
password: "<CLEARML_DOCKERHUB_TOKEN>"
|
||||
clearml:
|
||||
agentk8sglueKey: "<ACCESS_KEY>"
|
||||
agentk8sglueSecret: "<SECRET_KEY>"
|
||||
agentk8sglueKey: "<ACCESS_KEY>"
|
||||
agentk8sglueSecret: "<SECRET_KEY>"
|
||||
agentk8sglue:
|
||||
apiServerUrlReference: "https://api.<BASE_DOMAIN>"
|
||||
fileServerUrlReference: "https://files.<BASE_DOMAIN>"
|
||||
webServerUrlReference: "https://app.<BASE_DOMAIN>"
|
||||
defaultContainerImage: "python:3.9"
|
||||
apiServerUrlReference: "https://api.<BASE_DOMAIN>"
|
||||
fileServerUrlReference: "https://files.<BASE_DOMAIN>"
|
||||
webServerUrlReference: "https://app.<BASE_DOMAIN>"
|
||||
defaultContainerImage: "python:3.9"
|
||||
```
|
||||
|
||||
|
||||
#### Installing the Chart
|
||||
|
||||
|
||||
```
|
||||
```bash
|
||||
helm install -n <WORKLOAD_NAMESPACE> \
|
||||
clearml-agent \
|
||||
clearml-enterprise/clearml-enterprise-agent \
|
||||
@ -276,7 +237,7 @@ helm install -n <WORKLOAD_NAMESPACE> \
|
||||
To create a queue by API:
|
||||
|
||||
|
||||
```
|
||||
```bash
|
||||
curl $APISERVER_URL/queues.create \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "X-Clearml-Impersonate-As:<USER_ID>" \
|
||||
@ -294,22 +255,22 @@ curl $APISERVER_URL/queues.create \
|
||||
The Helm Chart must be installed with `overrides.yaml`:
|
||||
|
||||
|
||||
```
|
||||
```yaml
|
||||
imageCredentials:
|
||||
password: "<DOCKERHUB_TOKEN>"
|
||||
password: "<DOCKERHUB_TOKEN>"
|
||||
clearml:
|
||||
apiServerKey: ""
|
||||
apiServerSecret: ""
|
||||
apiServerUrlReference: "https://api."
|
||||
authCookieName: ""
|
||||
apiServerKey: ""
|
||||
apiServerSecret: ""
|
||||
apiServerUrlReference: "https://api."
|
||||
authCookieName: ""
|
||||
ingress:
|
||||
enabled: true
|
||||
hostName: "task-router.dev"
|
||||
enabled: true
|
||||
hostName: "task-router.dev"
|
||||
tcpSession:
|
||||
routerAddress: "<NODE_IP OR EXTERNAL_NAME>"
|
||||
portRange:
|
||||
start: <START_PORT>
|
||||
end: <END_PORT>
|
||||
routerAddress: "<NODE_IP OR EXTERNAL_NAME>"
|
||||
portRange:
|
||||
start: <START_PORT>
|
||||
end: <END_PORT>
|
||||
```
|
||||
|
||||
|
||||
@ -330,7 +291,7 @@ tcpSession:
|
||||
### Installing the Chart
|
||||
|
||||
|
||||
```
|
||||
```bash
|
||||
helm install -n <WORKLOAD_NAMESPACE> \
|
||||
clearml-ttr \
|
||||
clearml-enterprise/clearml-enterprise-task-traffic-router \
|
||||
@ -429,20 +390,20 @@ This example configures a specific queue, but you can include this setting in th
|
||||
apply it to all tasks.
|
||||
|
||||
|
||||
```
|
||||
```yaml
|
||||
agentk8sglue:
|
||||
queues:
|
||||
GPUshm:
|
||||
templateOverrides:
|
||||
env:
|
||||
- name: VLLM_SKIP_P2P_CHECK
|
||||
value: "1"
|
||||
volumeMounts:
|
||||
- name: dshm
|
||||
mountPath: /dev/shm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: <SIZE>Gi
|
||||
queues:
|
||||
GPUshm:
|
||||
templateOverrides:
|
||||
env:
|
||||
- name: VLLM_SKIP_P2P_CHECK
|
||||
value: "1"
|
||||
volumeMounts:
|
||||
- name: dshm
|
||||
mountPath: /dev/shm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: <SIZE>Gi
|
||||
```
|
||||
|
@ -58,7 +58,7 @@ ClearML provides flexibility for explicitly connecting input models and experime
|
||||
|
||||
## WebApp Interface
|
||||
|
||||
In the ClearML's web UI, model information can be located through a project's Model Table or through the model's creating
|
||||
In the ClearML web UI, model information can be located through a project's Model Table or through the model's creating
|
||||
task.
|
||||
|
||||
Models associated with a task appear in the task's **ARTIFACTS** tab. To see further model details, including design,
|
||||
|
@ -17,7 +17,7 @@ In the ``clearml`` GitHub repository, this example includes a clickable icon to
|
||||
|
||||
## Scalars
|
||||
|
||||
To reports scalars, call [`Logger.report_scalar()`](../../references/sdk/logger.md#report_scalar).
|
||||
To report scalars, call [`Logger.report_scalar()`](../../references/sdk/logger.md#report_scalar).
|
||||
The scalar plots appear in the **web UI** in **SCALARS**.
|
||||
|
||||
```python
|
||||
|
@ -49,7 +49,7 @@ flags.DEFINE_string('echo5', '5', 'Text to echo.', module_name='test')
|
||||
|
||||
```
|
||||
|
||||
TensorFlow Definitions appear in **HYPEPARAMETERS** **>** **TF_DEFINE**.
|
||||
TensorFlow Definitions appear in **HYPERPARAMETERS** **>** **TF_DEFINE**.
|
||||
|
||||

|
||||

|
||||
|
@ -7,7 +7,8 @@ demonstrates explicit scalar reporting. ClearML reports scalars in the **ClearML
|
||||
|
||||
When the script runs, it creates a task named `scalar reporting` in the `examples` project.
|
||||
|
||||
To reports scalars, call [`Logger.report_scalar()`](../../references/sdk/logger.md#report_scalar).
|
||||
## Reporting Scalar Series
|
||||
To report scalar series, call [`Logger.report_scalar()`](../../references/sdk/logger.md#report_scalar).
|
||||
To report more than one series on the same plot, use the same `title` argument. For different plots, use different
|
||||
`title` arguments.
|
||||
|
||||
@ -31,4 +32,20 @@ for i in range(100):
|
||||
)
|
||||
```
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
## Reporting Single Scalar Values
|
||||
|
||||
To report single scalar values (individual metrics, not part of a series), use [`Logger.report_single_value()`](../../references/sdk/logger.md#report_single_value).
|
||||
|
||||
```python
|
||||
# Report individual scalar values
|
||||
Logger.current_logger().report_single_value(name="metric A", value=486)
|
||||
Logger.current_logger().report_single_value(name="metric B", value=305.95)
|
||||
```
|
||||
|
||||
Single value scalars are shown in the UI in the task's **SCALARS** tab under the `Summary` table.
|
||||
|
||||

|
||||

|
||||
|
@ -3,15 +3,46 @@ title: Text Reporting
|
||||
---
|
||||
|
||||
The [text_reporting.py](https://github.com/clearml/clearml/blob/master/examples/reporting/text_reporting.py) script
|
||||
demonstrates reporting explicit text by calling [`Logger.report_text()`](../../references/sdk/logger.md#report_text).
|
||||
|
||||
ClearML reports the text in the **ClearML Web UI**, in the task's **CONSOLE** tab.
|
||||
demonstrates reporting text output and samples.
|
||||
|
||||
When the script runs, it creates a task named `text reporting` in the `examples` project.
|
||||
|
||||
|
||||
|
||||
## Reporting Text to Console
|
||||
To report text to the task console, call [`Logger.report_text()`](../../references/sdk/logger.md#report_text):
|
||||
|
||||
```python
|
||||
# report text
|
||||
Logger.current_logger().report_text("hello, this is plain text")
|
||||
```
|
||||
|
||||

|
||||
Text reported with `Logger.report_text()` appears in the task's **CONSOLE** tab in the ClearML Web UI.
|
||||
|
||||

|
||||

|
||||
|
||||
## Reporting Text as Debug Samples
|
||||
To report longer text as a debug sample (e.g., logs, large text outputs, or structured text files),
|
||||
use [`Logger.report_media()`](../../references/sdk/logger.md#report_media) with a text stream and `.txt` file extension:
|
||||
|
||||
```python
|
||||
text_to_send = """
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
|
||||
Suspendisse ac justo ut dolor scelerisque posuere.
|
||||
...
|
||||
"""
|
||||
|
||||
Logger.current_logger().report_media(
|
||||
title="text title",
|
||||
series="text series",
|
||||
iteration=1,
|
||||
stream=six.StringIO(text_to_send),
|
||||
file_extension=".txt",
|
||||
)
|
||||
```
|
||||
|
||||
Text samples appear in the task's **DEBUG SAMPLES** tab in the ClearML Web UI.
|
||||
|
||||

|
||||

|
||||
|
@ -380,7 +380,7 @@ list_of_frames = myDataView.to_list()
|
||||
##### Frame Query for Time Interval
|
||||
|
||||
This example demonstrates a frame query filtering for frames containing the meta key `updated` with any value between
|
||||
`08:000` and `09:00` on October 20th, 2024:
|
||||
`08:00` and `09:00` on October 20th, 2024:
|
||||
|
||||
```python
|
||||
# Add a frame query for frames with the meta key's value between 08:00:00 and 09:00:00 on 2024-10-20
|
||||
|
@ -248,7 +248,7 @@ Filter by date/time metadata fields using Lucene queries.
|
||||
|
||||
* Open a frame in the frame viewer to see its metadata.
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
</Collapsible>
|
||||
|
Before Width: | Height: | Size: 70 KiB After Width: | Height: | Size: 71 KiB |
BIN
docs/img/examples_reporting_14_dark.png
Normal file
After Width: | Height: | Size: 73 KiB |
BIN
docs/img/examples_reporting_14a.png
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
docs/img/examples_reporting_14a_dark.png
Normal file
After Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 56 KiB After Width: | Height: | Size: 52 KiB |
BIN
docs/img/examples_reporting_text_dark.png
Normal file
After Width: | Height: | Size: 54 KiB |
BIN
docs/img/examples_reporting_text_debug.png
Normal file
After Width: | Height: | Size: 50 KiB |
BIN
docs/img/examples_reporting_text_debug_dark.png
Normal file
After Width: | Height: | Size: 46 KiB |
@ -101,7 +101,7 @@ input_model_2 = InputModel.import_model(
|
||||
)
|
||||
```
|
||||
|
||||
After instantiating an InputModel instance, you can connect it to a task object, so the model can be traced to n
|
||||
After instantiating an InputModel instance, you can connect it to a task object, so the model can be traced to a
|
||||
task.
|
||||
|
||||
```python
|
||||
@ -138,7 +138,7 @@ output_model.update_weights(weights_filename='models/model.pth')
|
||||
```
|
||||
|
||||
## Analyzing Models
|
||||
While experimenting, you build up your model catalog. In the ClearML's web UI, model information can be located through
|
||||
While experimenting, you build up your model catalog. In the ClearML web UI, model information can be located through
|
||||
a project's Model Table or through the model's associated task.
|
||||
|
||||
Models associated with a task appear in the task's **ARTIFACTS** tab. To see further model details, including design,
|
||||
|
@ -77,6 +77,6 @@ For detailed instructions on each step, refer to the respective sections in this
|
||||
## Support
|
||||
For feature requests or bug reports, see ClearML on [GitHub](https://github.com/clearml/clearml/issues).
|
||||
|
||||
If you have any questions, join the discussion on the **ClearML** [Slack channel](https://joinslack.clear.ml), or tag your questions on [stackoverflow](https://stackoverflow.com/questions/tagged/clearml) with the **clearml** tag.
|
||||
If you have any questions, join the discussion on the **ClearML** [Slack channel](https://joinslack.clear.ml), or tag your questions on [Stack Overflow](https://stackoverflow.com/questions/tagged/clearml) with the **clearml** tag.
|
||||
|
||||
Lastly, you can always find us at [support@clearml.ai](mailto:support@clearml.ai?subject=ClearML).
|
@ -82,5 +82,5 @@ user access to these objects or their containing project.
|
||||
* Fix pipeline run version not set when re-executed via the UI
|
||||
* Fix UI DataView successfully created with identical IDs in label enumeration
|
||||
* Fix UI DataView created successfully when "Limit Frames" repetition option is selected, but the maximum number of frames is not set
|
||||
* Fix moving a enqueued experiment to a new UI queue results in error
|
||||
* Fix moving an enqueued experiment to a new UI queue results in error
|
||||
* Fix metric and hyperparameter group string not searchable in UI table
|
||||
|
@ -2,6 +2,17 @@
|
||||
title: Version 3.24
|
||||
---
|
||||
|
||||
### Enterprise Server 3.24.7
|
||||
|
||||
**Bug Fix**
|
||||
|
||||
* Fix duplicate emails can be added to user list
|
||||
|
||||
### Enterprise Server 3.24.6
|
||||
|
||||
**Bug Fix**
|
||||
* Fix setting a service account as admin navigates to incorrect page
|
||||
|
||||
### Enterprise Server 3.24.5
|
||||
|
||||
**New Feature**
|
||||
|
@ -15,7 +15,7 @@ title: Version 0.10
|
||||
|
||||
* Replace the Python web-server with NGINX.
|
||||
|
||||
* Improve sub-domain support ([GitHub trains-server Issue 9](https://github.com/clearml/clearml-server/issues/9)).
|
||||
* Improve subdomain support ([GitHub trains-server Issue 9](https://github.com/clearml/clearml-server/issues/9)).
|
||||
|
||||
* Extend configuration options
|
||||
|
||||
|
@ -68,7 +68,7 @@ title: Version 0.10
|
||||
* Add scikit-learn support (load/store using joblib) ([GitHub Issue #20](https://github.com/clearml/clearml/issues/20)).
|
||||
* Add xgboost support ([GitHub Issue #10](https://github.com/clearml/clearml/issues/10)).
|
||||
* Add loguru support ([GitHub Issue #29](https://github.com/clearml/clearml/issues/29)).
|
||||
* Add sub-domain support [trains.conf](https://github.com/clearml/clearml/blob/master/docs/trains.conf#L3) ([GitHub Issue #27](https://github.com/clearml/clearml/issues/27)).
|
||||
* Add subdomain support [trains.conf](https://github.com/clearml/clearml/blob/master/docs/trains.conf#L3) ([GitHub Issue #27](https://github.com/clearml/clearml/issues/27)).
|
||||
* Fix sub-process support.
|
||||
* Fix multiple TensorBoard writers ([GitHub Issue #26](https://github.com/clearml/clearml/issues/26)).
|
||||
|
||||
|
4
package-lock.json
generated
@ -10127,7 +10127,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/http-proxy-middleware": {
|
||||
"version": "2.0.7",
|
||||
"version": "2.0.9",
|
||||
"resolved": "https://registry.npmjs.org/http-proxy-middleware/-/http-proxy-middleware-2.0.9.tgz",
|
||||
"integrity": "sha512-c1IyJYLYppU574+YI7R4QyX2ystMtVXZwIdzazUIPIJsHuWNd+mho2j+bKoHftndicGj9yh+xjd+l0yj7VeT1Q==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"@types/http-proxy": "^1.17.8",
|
||||
|