mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-02 12:21:08 +00:00
Small edits (#128)
This commit is contained in:
parent
3af0edb147
commit
49de7323ab
@ -434,7 +434,7 @@ ClearML Agent supports executing tasks in multiple environments.
|
||||
### PIP Mode
|
||||
By default, ClearML Agent works in PIP Mode, in which it uses [pip](https://en.wikipedia.org/wiki/Pip_(package_manager))
|
||||
as the package manager. When ClearML runs, it will create a virtual environment
|
||||
(or reuse an exisitng one, see [here](clearml_agent.md#virtual-environment-reuse)).
|
||||
(or reuse an existing one, see [here](clearml_agent.md#virtual-environment-reuse)).
|
||||
Task dependencies (Python packages) will be installed in the virtual environment.
|
||||
|
||||
### Conda Mode
|
||||
@ -582,7 +582,7 @@ Do not enqueue training or inference tasks into the services queue. They will pu
|
||||
|
||||
Self hosted [ClearML Server](deploying_clearml/clearml_server.md) comes by default with a services queue.
|
||||
By default, the server is open and does not require username and password, but it can be [password protected](deploying_clearml/clearml_server_security#user-access-security).
|
||||
In case it is password protected the services agent will need to be configured with server credentials (associated with a user).
|
||||
In case it is password-protected, the services agent will need to be configured with server credentials (associated with a user).
|
||||
|
||||
To do that, set these environment variables on the ClearML Server machine with the appropriate credentials:
|
||||
```
|
||||
@ -627,8 +627,8 @@ It's possible to add the Docker container as the base Docker image to a Task (ex
|
||||
|
||||
## Google Colab
|
||||
|
||||
ClearML Agent can run on a [google colab](https://colab.research.google.com/) instance. This helps users to leverage
|
||||
compute resources provided by google colab and send experiments for execution on it.
|
||||
ClearML Agent can run on a [Google Colab](https://colab.research.google.com/) instance. This helps users to leverage
|
||||
compute resources provided by Google Colab and send experiments for execution on it.
|
||||
|
||||
Check out [this](guides/ide/google_colab.md) tutorial on how to run a ClearML Agent on Google Colab!
|
||||
|
||||
|
@ -31,7 +31,7 @@ and **ClearML Server** needs to be installed.
|
||||
|
||||
* Read/write permissions for the default **Trains Server** data directory `/opt/clearml/data` and its subdirectories, or,
|
||||
if this default directory is not used, the permissions for the directory and subdirectories that are used.
|
||||
* A minimum of 8GB system RAM.
|
||||
* A minimum of 8 GB system RAM.
|
||||
* Minimum free disk space of at least 30% plus two times the size of the data.
|
||||
* Python version >=2.7 or >=3.6, and Python accessible from the command-line as `python`
|
||||
|
||||
@ -43,20 +43,28 @@ and **ClearML Server** needs to be installed.
|
||||
|
||||
* **Linux and macOS**
|
||||
|
||||
docker-compose -f /opt/trains/docker-compose.yml down
|
||||
|
||||
```bash
|
||||
docker-compose -f /opt/trains/docker-compose.yml down
|
||||
```
|
||||
|
||||
* **Windows**
|
||||
|
||||
docker-compose -f c:\opt\trains\docker-compose-win10.yml down
|
||||
|
||||
```bash
|
||||
docker-compose -f c:\opt\trains\docker-compose-win10.yml down
|
||||
```
|
||||
|
||||
* **Kubernetes**
|
||||
|
||||
```bash
|
||||
kubectl delete -k overlays/current_version
|
||||
```
|
||||
|
||||
kubectl delete -k overlays/current_version
|
||||
|
||||
* **Kubernetes using Helm**
|
||||
|
||||
helm del --purge trains-server
|
||||
kubectl delete namespace trains
|
||||
```bash
|
||||
helm del --purge trains-server
|
||||
kubectl delete namespace trains
|
||||
```
|
||||
|
||||
1. For **Kubernetes** and **Kubernetes using Helm**, connect to the node in the Kubernetes cluster labeled `app=trains`.
|
||||
|
||||
@ -74,11 +82,13 @@ and **ClearML Server** needs to be installed.
|
||||
|
||||
* **Linux, macOS, and Windows** - if managing own containers.
|
||||
|
||||
Run the migration script. If elevated privileges are used to run Docker (`sudo` in Linux, or admin in Windows),
|
||||
Run the migration script. If elevated privileges are used to run Docker (`sudo` in Linux, or admin in Windows),
|
||||
then use elevated privileges to run the migration script.
|
||||
|
||||
python elastic_upgrade.py [-s|--source <source_path>] [-t|--target <target_path>] [-n|--no-backup] [-p|--parallel]
|
||||
|
||||
```bash
|
||||
python elastic_upgrade.py [-s|--source <source_path>] [-t|--target <target_path>] [-n|--no-backup] [-p|--parallel]
|
||||
```
|
||||
|
||||
The following optional command line parameters can be used to control the execution of the migration script:
|
||||
|
||||
* `<source_path>` - The path to the Elasticsearch data directory in the current **Trains Server** deployment.
|
||||
@ -203,7 +213,7 @@ For backwards compatibility, the environment variables ``TRAINS_HOST_IP``, ``TRA
|
||||
docker-compose -f /opt/clearml/docker-compose.yml pull
|
||||
docker-compose -f /opt/clearml/docker-compose.yml up -d
|
||||
|
||||
If issues arise during the upgrade, see the FAQ page, [How do I fix Docker upgrade errors?](../faq#common-docker-upgrade-errors).
|
||||
If issues arise during the upgrade, see the FAQ page, [How do I fix Docker upgrade errors?](../faq.md#common-docker-upgrade-errors).
|
||||
|
||||
##### Other Deployment Formats
|
||||
|
||||
|
@ -12,7 +12,7 @@ provides custom images for each released version of **ClearML Server**. For a li
|
||||
|
||||
After deploying **ClearML Server**, configure the **ClearML Python Package** for it, see [Configuring ClearML for ClearML Server](clearml_config_for_clearml_server.md).
|
||||
|
||||
For information about updgrading **ClearML server on GCP, see [here](upgrade_server_gcp.md).
|
||||
For information about upgrading **ClearML server on GCP, see [here](upgrade_server_gcp.md).
|
||||
|
||||
:::important
|
||||
If **ClearML Server** is being reinstalled, we recommend clearing browser cookies for **ClearML Server**. For example,
|
||||
|
@ -117,7 +117,7 @@ The node ports map to the following container ports:
|
||||
* `30081` maps to `clearml-fileserver` container on port `8081`
|
||||
|
||||
:::important
|
||||
We recommend using the container ports (``8080``, ``8008``, and ``8081``), or a load balancer (see the next section, [Accessing ClearML Server](#accessing)).
|
||||
We recommend using the container ports (``8080``, ``8008``, and ``8081``), or a load balancer (see the next section, [Accessing ClearML Server](#accessing-clearml-server)).
|
||||
:::
|
||||
|
||||
## Accessing ClearML Server
|
||||
|
288
docs/faq.md
288
docs/faq.md
@ -165,7 +165,10 @@ that metric column.
|
||||
Yes! For example, you can use the [Task.set_model_label_enumeration](references/sdk/task.md#set_model_label_enumerationenumerationnone)
|
||||
method to store label enumeration:
|
||||
|
||||
Task.current_task().set_model_label_enumeration( {"label": int(0), } )
|
||||
```python
|
||||
Task.current_task().set_model_label_enumeration( {"label": int(0), } )
|
||||
```
|
||||
|
||||
|
||||
For more information about `Task` class methods, see the [Task Class](fundamentals/task.md) reference page.
|
||||
|
||||
@ -176,7 +179,9 @@ For more information about `Task` class methods, see the [Task Class](fundamenta
|
||||
Yes! Use the [Task.set_model_config](references/sdk/task.md#set_model_configconfig_textnone-config_dictnone)
|
||||
method:
|
||||
|
||||
Task.current_task().set_model_config("a very long text with the configuration file's content")
|
||||
```python
|
||||
Task.current_task().set_model_config("a very long text with the configuration file's content")
|
||||
```
|
||||
|
||||
<br/>
|
||||
|
||||
@ -196,10 +201,12 @@ and [Task.connect](references/sdk/task.md#connect) methods to manually connect a
|
||||
[OutputModel.update_weights](references/sdk/model_outputmodel.md#update_weights)
|
||||
method to manually connect a model weights file.
|
||||
|
||||
input_model = InputModel.import_model(link_to_initial_model_file)
|
||||
Task.current_task().connect(input_model)
|
||||
```python
|
||||
input_model = InputModel.import_model(link_to_initial_model_file)
|
||||
Task.current_task().connect(input_model)
|
||||
|
||||
OutputModel(Task.current_task()).update_weights(link_to_new_model_file_here)
|
||||
OutputModel(Task.current_task()).update_weights(link_to_new_model_file_here)
|
||||
```
|
||||
|
||||
For more information about models, see [InputModel](references/sdk/model_inputmodel.md)
|
||||
and [OutputModel](references/sdk/model_outputmodel.md) classes.
|
||||
@ -281,13 +288,15 @@ Yes! ClearML supports connecting hyperparameter dictionaries to experiments, usi
|
||||
For example, to log the hyperparameters `learning_rate`, `batch_size`, `display_step`,
|
||||
`model_path`, `n_hidden_1`, and `n_hidden_2`:
|
||||
|
||||
# Create a dictionary of parameters
|
||||
parameters_dict = { 'learning_rate': 0.001, 'batch_size': 100, 'display_step': 1,
|
||||
'model_path': "/tmp/model.ckpt", 'n_hidden_1': 256, 'n_hidden_2': 256 }
|
||||
```python
|
||||
# Create a dictionary of parameters
|
||||
parameters_dict = { 'learning_rate': 0.001, 'batch_size': 100, 'display_step': 1,
|
||||
'model_path': "/tmp/model.ckpt", 'n_hidden_1': 256, 'n_hidden_2': 256 }
|
||||
|
||||
# Connect the dictionary to your CLEARML Task
|
||||
parameters_dict = Task.current_task().connect(parameters_dict)
|
||||
|
||||
# Connect the dictionary to your CLEARML Task
|
||||
parameters_dict = Task.current_task().connect(parameters_dict)
|
||||
```
|
||||
|
||||
|
||||
<br/>
|
||||
|
||||
@ -296,7 +305,10 @@ For example, to log the hyperparameters `learning_rate`, `batch_size`, `display_
|
||||
Yes! When creating experiments and calling [Task.init](fundamentals/task.md#usage),
|
||||
you can provide an experiment type. ClearML supports [multiple experiment types](fundamentals/task.md#task-types). For example:
|
||||
|
||||
task = Task.init(project_name, task_name, Task.TaskTypes.testing)
|
||||
```python
|
||||
task = Task.init(project_name, task_name, Task.TaskTypes.testing)
|
||||
```
|
||||
|
||||
|
||||
<br/>
|
||||
|
||||
@ -348,24 +360,26 @@ Your firewall may be preventing the connection. Try one of the following solutio
|
||||
An experiment's name is a user-controlled property, which can be accessed via the `Task.name` variable. This allows you to use meaningful naming schemes for easily filtering and comparing of experiments.
|
||||
|
||||
For example, to distinguish between different experiments, you can append the task ID to the task name:
|
||||
|
||||
task = Task.init('examples', 'train')
|
||||
task.name += ' {}'.format(task.id)
|
||||
```python
|
||||
task = Task.init('examples', 'train')
|
||||
task.name += ' {}'.format(task.id)
|
||||
```
|
||||
|
||||
Or, append the Task ID post-execution:
|
||||
```python
|
||||
tasks = Task.get_tasks(project_name='examples', task_name='train')
|
||||
for t in tasks:
|
||||
t.name += ' {}'.format(task.id)
|
||||
```
|
||||
|
||||
tasks = Task.get_tasks(project_name='examples', task_name='train')
|
||||
for t in tasks:
|
||||
t.name += ' {}'.format(task.id)
|
||||
|
||||
Another example is to append a specific hyperparameter and its value to each task's name:
|
||||
|
||||
tasks = Task.get_tasks(project_name='examples', task_name='my_automl_experiment')
|
||||
for t in tasks:
|
||||
params = t.get_parameters()
|
||||
if 'my_secret_parameter' in params:
|
||||
t.name += ' my_secret_parameter={}'.format(params['my_secret_parameter'])
|
||||
|
||||
```python
|
||||
tasks = Task.get_tasks(project_name='examples', task_name='my_automl_experiment')
|
||||
for t in tasks:
|
||||
params = t.get_parameters()
|
||||
if 'my_secret_parameter' in params:
|
||||
t.name += ' my_secret_parameter={}'.format(params['my_secret_parameter'])
|
||||
```
|
||||
Use this experiment naming when creating automation pipelines with a naming convention.
|
||||
|
||||
<a id="typing"></a>
|
||||
@ -398,11 +412,12 @@ You cannot undo the deletion of an experiment.
|
||||
:::
|
||||
|
||||
For example, the following script deletes an experiment whose Task ID is `123456789`.
|
||||
|
||||
from clearml_agent import APIClient
|
||||
```python
|
||||
from clearml_agent import APIClient
|
||||
|
||||
client = APIClient()
|
||||
client.tasks.delete(task='123456789')
|
||||
client = APIClient()
|
||||
client.tasks.delete(task='123456789')
|
||||
```
|
||||
|
||||
<a id="random_see"></a>
|
||||
|
||||
@ -429,14 +444,14 @@ that ran the Task stored the file. This applies to debug samples and artifacts.
|
||||
|
||||
If metric reporting begins within the first three minutes, ClearML reports resource monitoring by iteration. Otherwise,
|
||||
it reports resource monitoring by seconds from start, and logs a message:
|
||||
|
||||
CLEARML Monitor: Could not detect iteration reporting, falling back to iterations as seconds-from-start.
|
||||
|
||||
```
|
||||
CLEARML Monitor: Could not detect iteration reporting, falling back to iterations as seconds-from-start.
|
||||
```
|
||||
However, if metric reporting begins after three minutes and anytime up to thirty minutes, resource monitoring reverts to
|
||||
by iteration, and ClearML logs a message
|
||||
|
||||
CLEARML Monitor: Reporting detected, reverting back to iteration based reporting.
|
||||
|
||||
```
|
||||
CLEARML Monitor: Reporting detected, reverting back to iteration based reporting.
|
||||
```
|
||||
After thirty minutes, it remains unchanged.
|
||||
|
||||
<br/>
|
||||
@ -499,11 +514,17 @@ info panel > RESULTS tab > CONSOLE sub-tab, use the *Download full log* feature.
|
||||
Yes! You can manually create a plot with a single point X-axis for the hyperparameter value, and Y-axis for the accuracy.
|
||||
For example:
|
||||
|
||||
number_layers = 10
|
||||
accuracy = 0.95
|
||||
Task.current_task().get_logger().report_scatter2d(
|
||||
"performance", "accuracy", iteration=0,
|
||||
mode='markers', scatter=[(number_layers, accuracy)])
|
||||
```python
|
||||
number_layers = 10
|
||||
accuracy = 0.95
|
||||
Task.current_task().get_logger().report_scatter2d(
|
||||
"performance",
|
||||
"accuracy",
|
||||
iteration=0,
|
||||
mode='markers',
|
||||
scatter=[(number_layers, accuracy)]
|
||||
)
|
||||
```
|
||||
|
||||
Assuming the hyperparameter is `number_layers` with current value `10`, and the `accuracy` for the trained model is `0.95`. Then, the experiment comparison graph shows:
|
||||
|
||||
@ -511,11 +532,19 @@ Assuming the hyperparameter is `number_layers` with current value `10`, and the
|
||||
|
||||
Another option is a histogram chart:
|
||||
|
||||
number_layers = 10
|
||||
accuracy = 0.95
|
||||
Task.current_task().get_logger().report_vector(
|
||||
"performance", "accuracy", iteration=0, labels=['accuracy'],
|
||||
values=[accuracy], xlabels=['number_layers %d' % number_layers])
|
||||
```python
|
||||
number_layers = 10
|
||||
accuracy = 0.95
|
||||
Task.current_task().get_logger().report_vector(
|
||||
"performance",
|
||||
"accuracy",
|
||||
iteration=0,
|
||||
labels=['accuracy'],
|
||||
values=[accuracy],
|
||||
xlabels=['number_layers %d' % number_layers]
|
||||
)
|
||||
|
||||
```
|
||||
|
||||

|
||||
|
||||
@ -535,13 +564,28 @@ method reports all series with the same `title` and `iteration` parameter values
|
||||
|
||||
For example, the following two scatter2D series are reported on the same plot, because both have a `title` of `example_scatter` and an `iteration` of `1`:
|
||||
|
||||
scatter2d_1 = np.hstack((np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1))))
|
||||
logger.report_scatter2d("example_scatter", "series_1", iteration=1, scatter=scatter2d_1,
|
||||
xaxis="title x", yaxis="title y")
|
||||
```python
|
||||
scatter2d_1 = np.hstack((np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1))))
|
||||
logger.report_scatter2d(
|
||||
"example_scatter",
|
||||
"series_1",
|
||||
iteration=1,
|
||||
scatter=scatter2d_1,
|
||||
xaxis="title x",
|
||||
yaxis="title y"
|
||||
)
|
||||
|
||||
scatter2d_2 = np.hstack((np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1))))
|
||||
logger.report_scatter2d("example_scatter", "series_2", iteration=1, scatter=scatter2d_2,
|
||||
xaxis="title x", yaxis="title y")
|
||||
scatter2d_2 = np.hstack((np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1))))
|
||||
logger.report_scatter2d(
|
||||
"example_scatter",
|
||||
"series_2",
|
||||
iteration=1,
|
||||
scatter=scatter2d_2,
|
||||
xaxis="title x",
|
||||
yaxis="title y"
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
## GIT and Storage
|
||||
|
||||
@ -668,18 +712,21 @@ Yes! You can run ClearML in Jupyter Notebooks using either of the following:
|
||||
|
||||
1. Use the [Task.set_credentials](references/sdk/task.md#taskset_credentials)
|
||||
method to specify the host, port, access key and secret key (see step 1).
|
||||
|
||||
# Set your credentials using the trains apiserver URI and port, access_key, and secret_key.
|
||||
Task.set_credentials(host='http://localhost:8008',key='<access_key>', secret='<secret_key>')
|
||||
|
||||
```python
|
||||
# Set your credentials using the trains apiserver URI and port, access_key, and secret_key.
|
||||
Task.set_credentials(host='http://localhost:8008',key='<access_key>', secret='<secret_key>')
|
||||
```
|
||||
|
||||
:::note
|
||||
`host` is the API server (default port `8008`), not the web server (default port `8080`).
|
||||
:::
|
||||
|
||||
1. You can now use ClearML.
|
||||
|
||||
# create a task and start training
|
||||
task = Task.init('juptyer project', 'my notebook')
|
||||
```python
|
||||
# create a task and start training
|
||||
task = Task.init('juptyer project', 'my notebook')
|
||||
```
|
||||
|
||||
|
||||
<a id="commit-git-in-jupyter"></a>
|
||||
|
||||
@ -733,15 +780,21 @@ Set the OS environment variable `ClearML_LOG_ENVIRONMENT` with the variables you
|
||||
|
||||
* All environment variables:
|
||||
|
||||
export ClearML_LOG_ENVIRONMENT="*"
|
||||
```
|
||||
export ClearML_LOG_ENVIRONMENT="*"
|
||||
```
|
||||
|
||||
* Specific environment variables, for example, log `PWD` and `PYTHONPATH`:
|
||||
|
||||
export ClearML_LOG_ENVIRONMENT="PWD,PYTHONPATH"
|
||||
```
|
||||
export ClearML_LOG_ENVIRONMENT="PWD,PYTHONPATH"
|
||||
```
|
||||
|
||||
* No environment variables:
|
||||
|
||||
export ClearML_LOG_ENVIRONMENT=
|
||||
```
|
||||
export ClearML_LOG_ENVIRONMENT=
|
||||
```
|
||||
|
||||
## ClearML Hosted Service
|
||||
|
||||
@ -752,8 +805,6 @@ If you joined the ClearML Hosted Service and run a script, but your experiment d
|
||||
pip install clearml
|
||||
|
||||
clearml-init
|
||||
|
||||
|
||||
|
||||
## ClearML Server Deployment
|
||||
|
||||
@ -879,32 +930,46 @@ To change the MongoDB and / or Elastic ports for your ClearML Server, do the fol
|
||||
|
||||
* For MongoDB:
|
||||
|
||||
MONGODB_SERVICE_PORT: <new-mongodb-port>
|
||||
```bash
|
||||
MONGODB_SERVICE_PORT: <new-mongodb-port>
|
||||
```
|
||||
|
||||
* For Elastic:
|
||||
|
||||
ELASTIC_SERVICE_PORT: <new-elasticsearch-port>
|
||||
```bash
|
||||
ELASTIC_SERVICE_PORT: <new-elasticsearch-port>
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
MONGODB_SERVICE_PORT: 27018
|
||||
ELASTIC_SERVICE_PORT: 9201
|
||||
|
||||
```bash
|
||||
MONGODB_SERVICE_PORT: 27018
|
||||
ELASTIC_SERVICE_PORT: 9201
|
||||
```
|
||||
|
||||
1. For MongoDB, in the `services/mongo/ports` section, expose the new MongoDB port:
|
||||
|
||||
<new-mongodb-port>:27017
|
||||
|
||||
For example:
|
||||
```bash
|
||||
<new-mongodb-port>:27017
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
20718:27017
|
||||
|
||||
```bash
|
||||
20718:27017
|
||||
```
|
||||
|
||||
1. For Elastic, in the `services/elasticsearch/ports` section, expose the new Elastic port:
|
||||
|
||||
<new-elasticsearch-port>:9200
|
||||
|
||||
For example:
|
||||
```bash
|
||||
<new-elasticsearch-port>:9200
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
9201:9200
|
||||
```bash
|
||||
9201:9200
|
||||
```
|
||||
|
||||
1. Restart ClearML Server, see [Restarting ClearML Server](#restart).
|
||||
|
||||
@ -929,14 +994,18 @@ Do the following:
|
||||
|
||||
* Linux:
|
||||
|
||||
no_proxy=127.0.0.1
|
||||
NO_PROXY=127.0.0.1
|
||||
|
||||
```bash
|
||||
no_proxy=127.0.0.1
|
||||
NO_PROXY=127.0.0.1
|
||||
```
|
||||
|
||||
* Windows:
|
||||
|
||||
set no_proxy=127.0.0.1
|
||||
set NO_PROXY=127.0.0.1
|
||||
|
||||
```bash
|
||||
set no_proxy=127.0.0.1
|
||||
set NO_PROXY=127.0.0.1
|
||||
```
|
||||
|
||||
1. Run the ClearML wizard `clearml-init` to configure ClearML for ClearML Server, which will prompt you to open the ClearML Web UI at, [http://127.0.0.1:8080/](http://127.0.0.1:8080/), and create new ClearML credentials.
|
||||
|
||||
The wizard completes with:
|
||||
@ -1022,32 +1091,35 @@ For example, to get the metrics for an experiment and to print metrics as a hist
|
||||
1. From the response, get the data for the experiment (task) ID `11` and print the experiment name.
|
||||
1. Send a request for a metrics histogram for experiment (task) ID `11` using the `events` service `ScalarMetricsIterHistogramRequest` method and print the histogram.
|
||||
|
||||
# Import Session from the trains backend_api
|
||||
from trains.backend_api import Session
|
||||
# Import the services for tasks, events, and projects
|
||||
from trains.backend_api.services import tasks, events, projects
|
||||
```python
|
||||
# Import Session from the trains backend_api
|
||||
from trains.backend_api import Session
|
||||
# Import the services for tasks, events, and projects
|
||||
from trains.backend_api.services import tasks, events, projects
|
||||
|
||||
# Create an authenticated session
|
||||
session = Session()
|
||||
# Create an authenticated session
|
||||
session = Session()
|
||||
|
||||
# Get projects matching the project name 'examples'
|
||||
res = session.send(projects.GetAllRequest(name='examples'))
|
||||
# Get all the project Ids matching the project name 'examples"
|
||||
projects_id = [p.id for p in res.response.projects]
|
||||
print('project ids: {}'.format(projects_id))
|
||||
# Get projects matching the project name 'examples'
|
||||
res = session.send(projects.GetAllRequest(name='examples'))
|
||||
# Get all the project Ids matching the project name 'examples"
|
||||
projects_id = [p.id for p in res.response.projects]
|
||||
print('project ids: {}'.format(projects_id))
|
||||
|
||||
# Get all the experiments/tasks
|
||||
res = session.send(tasks.GetAllRequest(project=projects_id))
|
||||
# Get all the experiments/tasks
|
||||
res = session.send(tasks.GetAllRequest(project=projects_id))
|
||||
|
||||
# Do your work
|
||||
# For example, get the experiment whose ID is '11'
|
||||
task = res.response.tasks[11]
|
||||
print('task name: {}'.format(task.name))
|
||||
# Do your work
|
||||
# For example, get the experiment whose ID is '11'
|
||||
task = res.response.tasks[11]
|
||||
print('task name: {}'.format(task.name))
|
||||
|
||||
# For example, for experiment ID '11', get the experiment metric values
|
||||
res = session.send(events.ScalarMetricsIterHistogramRequest(
|
||||
task=task.id,
|
||||
))
|
||||
scalars = res.response_data
|
||||
print('scalars {}'.format(scalars))
|
||||
|
||||
# For example, for experiment ID '11', get the experiment metric values
|
||||
res = session.send(events.ScalarMetricsIterHistogramRequest(
|
||||
task=task.id,
|
||||
)
|
||||
)
|
||||
scalars = res.response_data
|
||||
print('scalars {}'.format(scalars))
|
||||
```
|
||||
|
||||
|
@ -7,7 +7,7 @@ ClearML logs hyperparameters used in experiments from multiple different sources
|
||||
|
||||
In ClearML, parameters are split into 3 sections:
|
||||
- User Properties - Modifiable section that can be edited post execution.
|
||||
- Hyperparameters - Individual parameters for configuration
|
||||
- Hyperparameters - Individual parameters for configuration.
|
||||
- Configuration Objects - Usually configuration files (Json \ YAML) or python objects.
|
||||
|
||||
These sections are further broken down into sub-sections (General \ Args \ TF_Define) for convenience.
|
||||
|
@ -3,10 +3,10 @@ title: ClearML Modules
|
||||
---
|
||||
|
||||
- **ClearML Python Package** (clearml) for integrating **ClearML** into your existing code-base.
|
||||
- **ClearML Server** (clearml-server) storing experiment, model, and workflow data, and supporting the Web UI experiment manager. It is also the control plane for the ML-Ops.
|
||||
- **ClearML Agent** (clearml-agent) The ML-Ops orchestration agent. Enabling experiment and workflow reproducibility, and scalability.
|
||||
- **ClearML Server** (clearml-server) storing experiment, model, and workflow data, and supporting the Web UI experiment manager. It is also the control plane for the MLOps.
|
||||
- **ClearML Agent** (clearml-agent) The MLOps orchestration agent. Enabling experiment and workflow reproducibility, and scalability.
|
||||
- **ClearML Data** (clearml-data) data management and versioning on top of file-systems/object-storage.
|
||||
- **ClearML Session** (clearml-session) Launch remote instances of Jupyter Notebooks and VSCode.
|
||||
solutions combined with the clearml-server control plain.
|
||||
Solutions combined with the clearml-server control plane.
|
||||
|
||||

|
@ -14,10 +14,10 @@ while ClearML ensures your work is reproducible and scalable.
|
||||
## What Can You Do with ClearML?
|
||||
|
||||
- Track and upload metrics and models with only 2 lines of code
|
||||
- Create a bot that sends you a slack message whenever you model improves in accuracy
|
||||
- Create a bot that sends you a Slack message whenever your model improves in accuracy
|
||||
- Automatically scale AWS instances according to your resources needs
|
||||
- Reproduce experiments with 3 mouse clicks
|
||||
- Much More!
|
||||
- Much more!
|
||||
|
||||
#### Who We Are
|
||||
ClearML is supported by you :heart: and by the team behind [allegro.ai](https://www.allegro.ai) , where we build even more MLOps for enterprise companies.
|
@ -72,7 +72,7 @@ Docker container image to be used, or change the hyperparameters and configurati
|
||||
Once you have set up an experiment, it is now time to execute it.
|
||||
|
||||
**To execute an experiment through the ClearML WebApp:**
|
||||
1. Right click your draft experiment (the context menu is also available through the <img src="/docs/latest/icons/ico-bars-menu.svg" className="icon size-md space-sm" />
|
||||
1. Right click your draft experiment (the context menu is also available through the <img src="/docs/latest/icons/ico-bars-menu.svg" alt="Menu" className="icon size-md space-sm" />
|
||||
button on the top right of the experiment’s info panel)
|
||||
1. Click **ENQUEUE,** which will open the **ENQUEUE EXPERIMENT** window
|
||||
1. In the window, select `default` in the queue menu
|
||||
|
@ -35,14 +35,18 @@ task = Task.init(project_name='data', task_name='create', task_type='data_proces
|
||||
dataset = Dataset.get(dataset_project='data', dataset_name='dataset_v1')
|
||||
|
||||
# get a local mutable copy of the dataset
|
||||
dataset_folder = dataset.get_mutable_local_copy(target_folder='work_dataset', overwrite=True)
|
||||
dataset_folder = dataset.get_mutable_local_copy(
|
||||
target_folder='work_dataset',
|
||||
overwrite=True
|
||||
)
|
||||
# change some files in the `./work_dataset` folder
|
||||
...
|
||||
# create a new version of the dataset with the pickle file
|
||||
new_dataset = Dataset.create(
|
||||
dataset_project='data', dataset_name='dataset_v2',
|
||||
parent_datasets=[dataset],
|
||||
use_current_task=True, # this will make sure we have the creation code and the actual dataset artifacts on the same Task
|
||||
use_current_task=True,
|
||||
# this will make sure we have the creation code and the actual dataset artifacts on the same Task
|
||||
)
|
||||
new_dataset.sync_folder(local_path=dataset_folder)
|
||||
new_dataset.upload()
|
||||
|
@ -13,8 +13,9 @@ Hyper-Datasets are supported by the `allegroai` python package.
|
||||
Use [`Task.connect`](../references/sdk/task.md#connect) to connect a Dataview object to a Task:
|
||||
|
||||
```python
|
||||
from allegroai import DataView
|
||||
from allegroai import DataView, Task
|
||||
|
||||
task = Task.init(project_name='examples', task_name='my task')
|
||||
dataview = DataView()
|
||||
task.connect(dataview)
|
||||
```
|
||||
@ -24,7 +25,7 @@ task.connect(dataview)
|
||||
Use the `Task.get_dataviews` method to access the Dataviews that are connected to a Task.
|
||||
|
||||
```python
|
||||
task.get_dataviews():
|
||||
task.get_dataviews()
|
||||
```
|
||||
|
||||
This returns a dictionary of Dataview objects and their names.
|
||||
|
@ -27,7 +27,7 @@ Use annotation tasks to efficiently organize the annotation of frames in Dataset
|
||||
* **All Frames** - Include all frames in this task.
|
||||
* **Empty Frames** - Include only frames without any annotations in this task.
|
||||
* **By Label** - Include only frames with specific labels, and optionally filter these frames by confidence level and
|
||||
the number of instances. You can also click <img src="/docs/latest/icons/ico-code.svg" className="icon size-md space-sm" /> and then add a Lucene query for this ROI label filter.
|
||||
the number of instances. You can also click <img src="/docs/latest/icons/ico-code.svg" alt="Code" className="icon size-md space-sm" /> and then add a Lucene query for this ROI label filter.
|
||||
|
||||
1. Choose the iteration parameters specifying how frames in this version are presented to the annotator.
|
||||
|
||||
@ -46,13 +46,13 @@ Use annotation tasks to efficiently organize the annotation of frames in Dataset
|
||||
|
||||
To mark an annotation task as **Completed**:
|
||||
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" className="icon size-md space-sm" /> (menu) **>** **Complete** **>** **CONFIRM**.
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" alt="Menu" className="icon size-md space-sm" /> (menu) **>** **Complete** **>** **CONFIRM**.
|
||||
|
||||
### Deleting Annotation Tasks
|
||||
|
||||
To delete an annotation task:
|
||||
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" className="icon size-md space-sm" /> (menu) **>** **Delete** **>** **CONFIRM**.
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" alt="Menu" className="icon size-md space-sm" /> (menu) **>** **Delete** **>** **CONFIRM**.
|
||||
|
||||
### Filtering Annotation Tasks
|
||||
|
||||
@ -69,7 +69,7 @@ Sort the annotation tasks by either using **RECENT** or **NAME** from the drop-d
|
||||
|
||||
To View the Dataset version, filters, and iteration information:
|
||||
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" className="icon size-md space-sm" /> (menu) **>** **Info**
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" alt="Menu" className="icon size-md space-sm" /> (menu) **>** **Info**
|
||||
|
||||
|
||||
## Annotating Images and Video
|
||||
@ -82,7 +82,7 @@ depend upon the settings in the annotation task (see [Creating Annotation Tasks]
|
||||
|
||||
**To annotate frames:**
|
||||
|
||||
1. On the Annotator page, click the annotation task card, or click <img src="/docs/latest/icons/ico-bars-menu.svg" className="icon size-md space-sm" /> (menu)
|
||||
1. On the Annotator page, click the annotation task card, or click <img src="/docs/latest/icons/ico-bars-menu.svg" alt="Menu" className="icon size-md space-sm" /> (menu)
|
||||
and then click **Annotate**.
|
||||
1. See instructions below about annotating frames.
|
||||
|
||||
@ -91,10 +91,10 @@ depend upon the settings in the annotation task (see [Creating Annotation Tasks]
|
||||
|
||||
1. Select an annotation mode and add the bounded area to the frame image.
|
||||
|
||||
* Rectangle mode - Click <img src="/docs/latest/icons/ico-rectangle-icon-purple.svg" className="icon size-md space-sm" /> and then click the image, drag and release.
|
||||
* Polygon mode - Click <img src="/docs/latest/icons/ico-polygon-icon-purple.svg" className="icon size-md space-sm" /> and then click the image for the first vertex,
|
||||
* Rectangle mode - Click <img src="/docs/latest/icons/ico-rectangle-icon-purple.svg" alt="Rectangle mode" className="icon size-md space-sm" /> and then click the image, drag and release.
|
||||
* Polygon mode - Click <img src="/docs/latest/icons/ico-polygon-icon-purple.svg" alt="Polygon mode" className="icon size-md space-sm" /> and then click the image for the first vertex,
|
||||
move to another vertex and click, continue until closing the last vertex.
|
||||
* Key points mode - Click <img src="/docs/latest/icons/ico-keypoint-icon-purple.svg" className="icon size-md space-sm" /> and then click each key point.
|
||||
* Key points mode - Click <img src="/docs/latest/icons/ico-keypoint-icon-purple.svg" alt="Key points mode" className="icon size-md space-sm" /> and then click each key point.
|
||||
|
||||
1. In the new label area, choose or enter a label.
|
||||
1. Optionally, add metadata.
|
||||
|
@ -67,7 +67,7 @@ Use frame viewer controls to navigate between frames in a Hyper-Dataset Version,
|
||||
|
||||
**To view / edit a frame in the frame editor**
|
||||
|
||||
1. Locate your frame by applying a [simple frame filter](#simple) or [advanced frame filter](#advanced), and clicking <span class="tr_gui">LOAD MORE</span>, if required.
|
||||
1. Locate your frame by applying a [simple frame filter](#simple-frame-filtering) or [advanced frame filter](#advanced-frame-filtering), and clicking <span class="tr_gui">LOAD MORE</span>, if required.
|
||||
1. Click the frame thumbnail. The frame editor appears.
|
||||
1. Do any of the following:
|
||||
* View frame details, including:
|
||||
@ -148,7 +148,7 @@ where each frame filter can be a combination of ROI, frame, and source rules.
|
||||
|
||||
* Choose **Include** or **Exclude**, select ROI labels, and optionally set the confidence level range.
|
||||
|
||||
* To switch from the ROI dropdown list to a Lucene query mode, click <img src="/docs/latest/icons/ico-edit.svg" className="icon size-md space-sm" />.
|
||||
* To switch from the ROI dropdown list to a Lucene query mode, click <img src="/docs/latest/icons/ico-edit.svg" alt="edit pencil" className="icon size-md space-sm" />.
|
||||
|
||||
* Frame rule - Enter a Lucene query using frame metadata fields in the format `meta.<key>:<value>`.
|
||||
|
||||
|
@ -98,8 +98,8 @@ Frame exports downloaded filtered frames as a JSON file.
|
||||
|
||||
**To modify a version description, do the following:**
|
||||
|
||||
* Expand the **INFO** area, hover over the **Description**, click <img src="/docs/latest/icons/ico-edit.svg" className="icon size-md space-sm" />,
|
||||
edit the name, and then click <img src="/docs/latest/icons/ico-save.svg" className="icon size-md space-sm" /> (check).
|
||||
* Expand the **INFO** area, hover over the **Description**, click <img src="/docs/latest/icons/ico-edit.svg" alt="Edit pencil" className="icon size-md space-sm" />,
|
||||
edit the name, and then click <img src="/docs/latest/icons/ico-save.svg" alt="Check mark" className="icon size-md space-sm" /> (check).
|
||||
|
||||
### Deleting Versions
|
||||
|
||||
|
@ -19,7 +19,7 @@ provides a deep comparison of input data selection criteria of experiment Datavi
|
||||
**To locate the input data differences:**
|
||||
|
||||
1. Click the **DETAILS** tab **>** Expand the **DATAVIEWS** section, or, in the header, click <img src="/docs/latest/icons/ico-previous-diff.svg" alt="Previous diff" className="icon size-md" />
|
||||
(Previous diff) or <img src="/docs/latest/icons/ico-next-diff.svg" className="icon size-md space-sm" /> (Next diff).
|
||||
(Previous diff) or <img src="/docs/latest/icons/ico-next-diff.svg" alt="Next diff" className="icon size-md space-sm" /> (Next diff).
|
||||
1. Expand any of the following sections:
|
||||
|
||||
* **Augmentation** - On-the-fly data augmentation.
|
||||
|
@ -6,8 +6,8 @@ An experiment that has been executed can be [cloned](../../webapp/webapp_exp_rep
|
||||
execution details can be modified, and the modified experiment can be executed.
|
||||
|
||||
In addition to all the [**ClearML** tuning capabilities](../../webapp/webapp_exp_tuning.md), the **ClearML Enterprise WebApp** (UI)
|
||||
enables modifying Dataviews, including:
|
||||
* [Selected Dataview](#selected-dataview)
|
||||
enables modifying [Dataviews](webapp_dataviews.md), including:
|
||||
* [Selected Dataview](#selecting-dataviews)
|
||||
* [Dataset versions](#selecting-dataset-versions)
|
||||
* [Frame filtering](#filtering-frames)
|
||||
* [Label mapping](#mapping-labels-label-translation)
|
||||
@ -15,10 +15,7 @@ enables modifying Dataviews, including:
|
||||
* [Data augmentation](#data-augmentation)
|
||||
* [Input frame iteration controls](#iteration-controls)
|
||||
|
||||
|
||||
The selection and control of input data can be modified in *Draft* experiments that are not [development experiments](../task.md#development-experiments).
|
||||
Do this by modifying the Dataview used by the experiment. The Dataview specifies the Hyper-Dataset versions from which frames
|
||||
are iterated and frame filters (see [Dataviews](webapp_dataviews.md)).
|
||||
## Selecting Dataviews
|
||||
|
||||
**To choose a Dataview**, do any of the following:
|
||||
|
||||
@ -33,8 +30,8 @@ are iterated and frame filters (see [Dataviews](webapp_dataviews.md)).
|
||||
|
||||
* Import a different Dataview associated with the same or another project.
|
||||
|
||||
* Click <img src="/docs/latest/icons/ico-import.svg" className="icon size-md space-sm" /> (**Import dataview**) and then
|
||||
select **Import to current dataview** or **Import to aux dataview**.
|
||||
* Click <img src="/docs/latest/icons/ico-import.svg" alt="Import" className="icon size-md space-sm" /> (**Import dataview**) and then
|
||||
select **Import to current dataview** or **Import as aux dataview**.
|
||||
|
||||
:::note
|
||||
After importing a Dataview, it can be renamed and / or removed.
|
||||
@ -101,7 +98,7 @@ that are not mapped are ignored.
|
||||
|
||||
1. Select or enter the label to map to in the output model.
|
||||
|
||||
* Remove (<img src="/docs/latest/icons/ico-trash.svg" className="icon size-md space-sm" />) a mapping.
|
||||
* Remove (<img src="/docs/latest/icons/ico-trash.svg" alt="Trash" className="icon size-md space-sm" />) a mapping.
|
||||
|
||||
1. Click **SAVE**
|
||||
|
||||
@ -117,13 +114,13 @@ Modify the label enumeration assigned to output models.
|
||||
|
||||
* Select a label and then enter an integer for it.
|
||||
|
||||
* Remove (<img src="/docs/latest/icons/ico-trash.svg" className="icon size-md space-sm" />) an enumeration.
|
||||
* Remove (<img src="/docs/latest/icons/ico-trash.svg" alt="Trash" className="icon size-md space-sm" />) an enumeration.
|
||||
|
||||
1. Click **SAVE**.
|
||||
|
||||
## Data Augmentation
|
||||
|
||||
Modify the on-the-fly data augmentation applied to frames input from the select Hyper-Dataset versions and filtered by the frame filters. Data augmentation is applied in steps, where each step applies a method, operation, and strength.
|
||||
Modify the on-the-fly data augmentation applied to frame input from the select Hyper-Dataset versions and filtered by the frame filters. Data augmentation is applied in steps, where each step applies a method, operation, and strength.
|
||||
|
||||
For more detailed information, see [Data Augmentation](../dataviews.md#data-augmentation).
|
||||
|
||||
@ -133,7 +130,7 @@ For more detailed information, see [Data Augmentation](../dataviews.md#data-augm
|
||||
|
||||
* Add (**+**) or edit an augmentation step - Select a **METHOD**, **OPERATION**, and **STRENGTH**.
|
||||
|
||||
* Remove (<img src="/docs/latest/icons/ico-trash.svg" className="icon size-md space-sm" />) an augmentation step.
|
||||
* Remove (<img src="/docs/latest/icons/ico-trash.svg" alt="Trash" className="icon size-md space-sm" />) an augmentation step.
|
||||
|
||||
1. Click **SAVE**.
|
||||
|
||||
@ -161,7 +158,7 @@ For more detailed information, see [Iteration Control](../dataviews.md#iteration
|
||||
|
||||
* **Infinite Iterations**
|
||||
|
||||
1. Select the **RANDOM SEED** - If the experiment is rerun and the seed remains unchanged, the frames iteration is the same.
|
||||
1. Select the **RANDOM SEED** - If the experiment is rerun and the seed remains unchanged, the frame iteration is the same.
|
||||
|
||||
1. For video, enter a **CLIP LENGTH** - For video data sources, in the number of sequential frames from a clip to iterate.
|
||||
|
||||
|
@ -57,8 +57,8 @@ sorted by sections.
|
||||
|
||||
### To Locate the Source Differences:
|
||||
|
||||
* Click the **DETAILS** tab **>** Expand highlighted sections, or, in the header, click <img src="/docs/latest/icons/ico-previous-diff.svg" alt="Previous diff" className="icon size-md" />
|
||||
(Previous diff) or <img src="/docs/latest/icons/ico-next-diff.svg" alt="next difference" className="icon size-md space-sm" /> (Next diff).
|
||||
* Click the **DETAILS** tab **>** Expand highlighted sections, or, in the header, click <img src="/docs/latest/icons/ico-previous-diff.svg" alt="Left arrow" className="icon size-md" />
|
||||
(Previous diff) or <img src="/docs/latest/icons/ico-next-diff.svg" alt="Right arrow" className="icon size-md space-sm" /> (Next diff).
|
||||
|
||||
For example, in the image below, expanding **ARTIFACTS** **>** **Output Model** **>** **Model** shows that the model ID
|
||||
and name are different.
|
||||
@ -81,8 +81,8 @@ The Values mode is a side-by-side comparison that shows hyperparameter value dif
|
||||
1. In the dropdown menu (on the upper left, next to **+ Add Experiments**), choose **Values**.
|
||||
1. To show only differences, move the **Hide Identical Fields** slider to on.
|
||||
1. Locate differences by either:
|
||||
* Clicking <img src="/docs/latest/icons/ico-previous-diff.svg" className="icon size-md space-sm" /> (Previous diff) or
|
||||
<img src="/docs/latest/icons/ico-next-diff.svg" className="icon size-md space-sm" /> (Next diff).
|
||||
* Clicking <img src="/docs/latest/icons/ico-previous-diff.svg" alt="Left arrow" className="icon size-md space-sm" /> (Previous diff) or
|
||||
<img src="/docs/latest/icons/ico-next-diff.svg" alt="Right arrow" className="icon size-md space-sm" /> (Next diff).
|
||||
* Scrolling to see highlighted hyperparameters.
|
||||
|
||||
For example, expanding **General** shows that the `batch_size` and `epochs` differ between the experiments.
|
||||
@ -193,7 +193,7 @@ Compare debug samples at any iteration to verify that an experiment is running a
|
||||
first. Use the viewer / player to inspect images, audio, video samples and do any of the following:
|
||||
* Move to the same sample in a different iteration (move the iteration slider).
|
||||
* Show the next or previous iteration's sample.
|
||||
* Download the file <img src="/docs/latest/icons/ico-download-json.svg" className="icon size-md space-sm" />.
|
||||
* Download the file <img src="/docs/latest/icons/ico-download-json.svg" alt="Download" className="icon size-md space-sm" />.
|
||||
* Zoom.
|
||||
* View the sample's iteration number, width, height, and coordinates.
|
||||
|
||||
@ -203,8 +203,8 @@ first. Use the viewer / player to inspect images, audio, video samples and do an
|
||||
1. Locate debug samples by doing the following:
|
||||
|
||||
* Filter by metric. In the **Metric** list, choose a metric.
|
||||
* Show other iterations. Click <img src="/docs/latest/icons/ico-circle-older.svg" className="icon size-md space-sm" /> (Older images),
|
||||
<img src="/docs/latest/icons/ico-circle-newer.svg" className="icon size-md space-sm" /> (New images), or <img src="/docs/latest/icons/ico-circle-newest.svg" className="icon size-md space-sm" /> (Newest images).
|
||||
* Show other iterations. Click <img src="/docs/latest/icons/ico-circle-older.svg" alt="Left arrow" className="icon size-md space-sm" /> (Older images),
|
||||
<img src="/docs/latest/icons/ico-circle-newer.svg" alt="Right arrow" className="icon size-md space-sm" /> (New images), or <img src="/docs/latest/icons/ico-circle-newest.svg" alt="right arrow, newest image" className="icon size-md space-sm" /> (Newest images).
|
||||
|
||||

|
||||
|
||||
@ -212,8 +212,8 @@ first. Use the viewer / player to inspect images, audio, video samples and do an
|
||||
|
||||

|
||||
|
||||
1. To move to the same sample in another iteration, click <img src="/docs/latest/icons/ico-previous.svg" className="icon size-md space-sm" />
|
||||
(previous), <img src="/docs/latest/icons/ico-next.svg" className="icon size-md space-sm" /> (next), or move the slider.
|
||||
1. To move to the same sample in another iteration, click <img src="/docs/latest/icons/ico-previous.svg" alt="Left arrow" className="icon size-md space-sm" />
|
||||
(previous), <img src="/docs/latest/icons/ico-next.svg" alt="Right arrow" className="icon size-md space-sm" /> (next), or move the slider.
|
||||
|
||||
**To view a debug sample in the viewer / player:**
|
||||
|
||||
@ -222,7 +222,7 @@ first. Use the viewer / player to inspect images, audio, video samples and do an
|
||||
1. Do any of the following:
|
||||
|
||||
* Move to the same sample in another iteration - Move the slider, or click **<** (previous) or **>** (next).
|
||||
* Download the file - Click <img src="/docs/latest/icons/ico-download-json.svg" className="icon size-md space-sm" />.
|
||||
* Download the file - Click <img src="/docs/latest/icons/ico-download-json.svg" alt="Download" className="icon size-md space-sm" />.
|
||||
* Zoom
|
||||
* For images, locate a position on the sample - Hover over the sample and the X, Y coordinates appear in the legend below the sample.
|
||||
|
||||
@ -253,8 +253,8 @@ an experiment, click <img src="/docs/latest/icons/ico-trash.svg" alt="Trash" cla
|
||||
|
||||
### Finding the Next or Previous Difference
|
||||
|
||||
* Find the previous difference <img src="/docs/latest/icons/ico-previous-diff.svg" className="icon size-md space-sm" />, or
|
||||
the next difference <img src="/docs/latest/icons/ico-next-diff.svg" className="icon size-md space-sm" />.
|
||||
* Find the previous difference <img src="/docs/latest/icons/ico-previous-diff.svg" alt="Left arrow" className="icon size-md space-sm" />, or
|
||||
the next difference <img src="/docs/latest/icons/ico-next-diff.svg" alt="Right arrow" className="icon size-md space-sm" />.
|
||||
|
||||
|
||||
|
||||
@ -273,8 +273,8 @@ Search all text in the comparison.
|
||||
### Choosing a Different Base Experiment
|
||||
|
||||
Show differences in other experiments in reference to a new base experiment. To set a new base experiment, do one of the following:
|
||||
* Click on <img src="/docs/latest/icons/ico-switch-base.svg" className="icon size-md space-sm" /> on the top right of the experiment that will be the new base.
|
||||
* Click on <img src="/docs/latest/icons/ico-pan.svg" className="icon size-md space-sm" /> the new base experiment and drag it all the way to the left
|
||||
* Click on <img src="/docs/latest/icons/ico-switch-base.svg" alt="Switch base" className="icon size-md space-sm" /> on the top right of the experiment that will be the new base.
|
||||
* Click on <img src="/docs/latest/icons/ico-pan.svg" alt="Pan" className="icon size-md space-sm" /> the new base experiment and drag it all the way to the left
|
||||
|
||||

|
||||
|
||||
@ -282,13 +282,13 @@ Show differences in other experiments in reference to a new base experiment. To
|
||||
|
||||
### Dynamic Ordering of the Compared Experiments
|
||||
|
||||
To reorder the experiments being compared, press <img src="/docs/latest/icons/ico-pan.svg" className="icon size-md space-sm" /> on the top right of the experiment that
|
||||
To reorder the experiments being compared, press <img src="/docs/latest/icons/ico-pan.svg" alt="Pan" className="icon size-md space-sm" /> on the top right of the experiment that
|
||||
needs to be moved, and drag the experiment to its new position.
|
||||
|
||||

|
||||
|
||||
### Removing an Experiment from the Comparison
|
||||
Remove an experiment from the comparison, by pressing <img src="/docs/latest/icons/ico-remove-compare.svg" className="icon size-md space-sm" />
|
||||
Remove an experiment from the comparison, by pressing <img src="/docs/latest/icons/ico-remove-compare.svg" alt="Minus" className="icon size-md space-sm" />
|
||||
on the top right of the experiment that needs to be removed.
|
||||
|
||||

|
||||
|
@ -100,7 +100,7 @@ The output details include:
|
||||
<summary className="cml-expansion-panel-summary">View a screenshot</summary>
|
||||
<div className="cml-expansion-panel-content">
|
||||
|
||||

|
||||

|
||||
|
||||
</div>
|
||||
</details>
|
||||
@ -205,7 +205,7 @@ except experiments whose status is *Published* (read-only).
|
||||
|
||||
**ClearML** tracks experiment (Task) model configuration objects, which appear in **Configuration Objects** **>** **General**.
|
||||
These objects include those that are automatically tracked, and those connected to a Task in code (see [Task.connect_configuration](../references/sdk/task.md#connect_configuration)).
|
||||
**ClearML** supports providing a name for a Task model configuration object (see the [name](../references/sdk/task.md#connect_configuration)
|
||||
**ClearML** supports providing a name for a Task model configuration object (see the [name](../references/sdk/task.md#connect_configuration))
|
||||
parameter in `Task.connect_configuration`.
|
||||
|
||||
:::important
|
||||
|
@ -20,6 +20,6 @@ For each class, label enumeration contains the class name (key) and value.
|
||||
|
||||
**To add, change, or delete label enumeration classes:**
|
||||
* In the **MODELS** tab, click a model **>** **LABELS** **>** Hover over **LABELS** **>** **EDIT** **>** **+**, edit a
|
||||
key or value, or <img src="/docs/latest/icons/ico-trash.svg" alt="trash" className="icon size-sm space-sm" /> (delete) **>** **SAVE**.
|
||||
key or value, or <img src="/docs/latest/icons/ico-trash.svg" alt="Trash" className="icon size-sm space-sm" /> (delete) **>** **SAVE**.
|
||||
|
||||

|
||||
|
@ -68,7 +68,7 @@ allow each feature. Model states are *Draft* (editable) and *Published* (read-on
|
||||
These actions can be accessed with the context menu (when right-clicking a model or clicking the menu button <img src="/docs/latest/icons/ico-bars-menu.svg" alt="Menu" className="icon size-md space-sm" />
|
||||
in a model's info panel).
|
||||
|
||||
Some of the actions mentioned in the chart above can be performed on multiple models at once.
|
||||
Some actions mentioned in the chart above can be performed on multiple models at once.
|
||||
Select multiple models, then use either the context menu, or the bar that appears at the bottom of the page, to perform
|
||||
operations on the selected models. The context menu shows the number of models that can be affected by each action.
|
||||
The same information can be found in the bottom menu, in a tooltip that appears when hovering over an action icon.
|
||||
|
@ -13,7 +13,7 @@ The **ClearML Web UI** is the graphical user interface for the **ClearML** platf
|
||||
|
||||
|
||||
The **ClearML Web UI** is composed of the following pages:
|
||||
* The [Home](webapp_home.md) Page - The dashboard for recent activity, and quick access to experiments and and projects.
|
||||
* The [Home](webapp_home.md) Page - The dashboard for recent activity, and quick access to experiments and projects.
|
||||
* The Projects Page - The main experimentation page. It is a main projects page where specific projects can be opened.
|
||||
|
||||
Each project page contains customizable [experiments](webapp_exp_table.md) and [models](webapp_model_table.md) tables
|
||||
|
Loading…
Reference in New Issue
Block a user