From 4456da40191f323a2387c36aef86e6ec684c42f5 Mon Sep 17 00:00:00 2001 From: pollfly <75068813+pollfly@users.noreply.github.com> Date: Tue, 26 Dec 2023 15:49:35 +0200 Subject: [PATCH] Small edits (#738) --- docs/apps/clearml_task.md | 2 +- .../data_man_python.md | 30 +++++++++++-------- .../clearml-task/clearml_task_tutorial.md | 9 +++--- 3 files changed, 22 insertions(+), 19 deletions(-) diff --git a/docs/apps/clearml_task.md b/docs/apps/clearml_task.md index 18fdeff1..61fc6a41 100644 --- a/docs/apps/clearml_task.md +++ b/docs/apps/clearml_task.md @@ -19,7 +19,7 @@ line arguments, Python module dependencies, and a requirements.txt file! 1. Execute `clearml-task`, specifying the ClearML target project and task name, along with your script (and repository / commit / branch). Optionally, specify an execution queue and Docker image to use. -1. `clearml-task` does its magic! It creates a new task on the [ClearML Server](../deploying_clearml/clearml_server.md), +1. `clearml-task` does its magic! It creates a new [ClearML Task](../fundamentals/task.md), and, if so directed, enqueues it for execution by a ClearML Agent. 1. While the Task is running on the remote machine, all its console outputs are logged in real-time, alongside your TensorBoard and matplotlib. You can track your script's progress and results in the [ClearML Web UI](../webapp/webapp_overview.md) diff --git a/docs/clearml_data/data_management_examples/data_man_python.md b/docs/clearml_data/data_management_examples/data_man_python.md index f9b20460..763c658c 100644 --- a/docs/clearml_data/data_management_examples/data_man_python.md +++ b/docs/clearml_data/data_management_examples/data_man_python.md @@ -18,21 +18,24 @@ demonstrates how to do the following: ### Downloading the Data -You first need to obtain a local copy of the CIFAR dataset. +You first need to obtain a local copy of the CIFAR dataset. +The code below downloads the data and `dataset_path` contains the path to the downloaded data: - ```python - from clearml import StorageManager +```python +from clearml import StorageManager - manager = StorageManager() - dataset_path = manager.get_local_copy( - remote_url="https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" - ) +manager = StorageManager() +dataset_path = manager.get_local_copy( + remote_url="https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" +) ``` -This script downloads the data and `dataset_path` contains the path to the downloaded data. ### Creating the Dataset +The following code creates a data processing task called `cifar_dataset` in the `dataset examples` project, which +can be viewed in the [WebApp](../../webapp/datasets/webapp_dataset_viewing.md). + ```python from clearml import Dataset @@ -42,23 +45,24 @@ dataset = Dataset.create( ) ``` -This creates a data processing task called `cifar_dataset` in the `dataset examples` project, which -can be viewed in the WebApp. ### Adding Files +Add the downloaded files to the current dataset: + ```python dataset.add_files(path=dataset_path) ``` -This adds the downloaded files to the current dataset. - ### Uploading the Files +Upload the dataset: + ```python dataset.upload() ``` -This uploads the dataset to the ClearML Server by default. The dataset's destination can be changed by specifying the + +By default, the dataset is uploaded to the ClearML File Server. The dataset's destination can be changed by specifying the target storage with the `output_url` parameter of the [`upload`](../../references/sdk/dataset.md#upload) method. ### Finalizing the Dataset diff --git a/docs/guides/clearml-task/clearml_task_tutorial.md b/docs/guides/clearml-task/clearml_task_tutorial.md index 038aa57b..98fae86a 100644 --- a/docs/guides/clearml-task/clearml_task_tutorial.md +++ b/docs/guides/clearml-task/clearml_task_tutorial.md @@ -7,9 +7,8 @@ on a remote or local machine, from a remote repository and your local machine. ### Prerequisites -- `clearml` Python package installed - -- `clearml-agent` running on at least one machine (to execute the experiment), configured to listen to default queue +- [`clearml`](../../getting_started/ds/ds_first_steps.md) Python package installed and configured +- [`clearml-agent`](../../clearml_agent.md#installation) running on at least one machine (to execute the experiment), configured to listen to `default` queue ### Executing Code from a Remote Repository @@ -34,9 +33,9 @@ or add the `--packages ""` option to the command (for example: `-- ::: Now `clearml-task` does all the heavy-lifting! -1. It creates a new Task on the [ClearML Server](../../deploying_clearml/clearml_server.md). +1. It creates a new [ClearML Task](../../fundamentals/task.md) 1. `clearml-task` enqueues the task in the selected execution queue, where a [ClearML Agent](../../clearml_agent.md) - assigned to that queue executes the task. + assigned to that queue executes the task Your output should look something like this: