Small edits (#1042)
Some checks are pending
CI / build (push) Waiting to run

This commit is contained in:
pollfly 2025-02-17 09:37:26 +02:00 committed by GitHub
parent 4d17794600
commit 43b0d9bae7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 34 additions and 3 deletions

View File

@ -146,6 +146,8 @@ You can retrieve the Dataview frames using [`DataView.to_list()`](../references/
This example uses an ROI query to filter for frames containing at least one ROI with the label `cat`: This example uses an ROI query to filter for frames containing at least one ROI with the label `cat`:
```python ```python
from allegroai import DataView, IterationOrder
# Create a Dataview object for an iterator that randomly returns frames according to queries # Create a Dataview object for an iterator that randomly returns frames according to queries
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=False) myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=False)
@ -166,6 +168,8 @@ list_of_frames = myDataView.to_list()
This example uses an ROI query to filter for frames containing at least one ROI with either the label `cat` OR the label `dog`: This example uses an ROI query to filter for frames containing at least one ROI with either the label `cat` OR the label `dog`:
```python ```python
from allegroai import DataView
# Add a query for a Dataset version # Add a query for a Dataset version
myDataView.add_query( myDataView.add_query(
dataset_name='myDataset', dataset_name='myDataset',
@ -189,6 +193,8 @@ list_of_frames = myDataView.to_list()
This example uses an ROI query to filter for frames containing at least one ROI with both the label `Car` AND the label `partly_occluded`: This example uses an ROI query to filter for frames containing at least one ROI with both the label `Car` AND the label `partly_occluded`:
```python ```python
from allegroai import DataView
# Add a query for a Dataset version # Add a query for a Dataset version
myDataView.add_query( myDataView.add_query(
dataset_name='myDataset', dataset_name='myDataset',
@ -207,6 +213,8 @@ This example uses an ROI query to filter for frames containing at least one ROI
have the label `partly_occluded`: have the label `partly_occluded`:
```python ```python
from allegroai import DataView
# Add a query for a Dataset version # Add a query for a Dataset version
# Use a Lucene Query # Use a Lucene Query
# "label" is a key in the rois dictionary of a frame # "label" is a key in the rois dictionary of a frame
@ -229,6 +237,8 @@ ROI with the label `Person`. The example demonstrates using the `roi_queries` pa
with a list of [`DataView.RoiQuery`](../references/hyperdataset/dataview.md#roiquery) objects: with a list of [`DataView.RoiQuery`](../references/hyperdataset/dataview.md#roiquery) objects:
```python ```python
from allegroai import DataView
myDataview = DataView() myDataview = DataView()
myDataview.add_multi_query( myDataview.add_multi_query(
dataset_id=self._dataset_id, dataset_id=self._dataset_id,
@ -247,6 +257,8 @@ contain ROIs with the label `Person`. To exclude an ROI, pass `must_not=True` in
object. object.
```python ```python
from allegroai import DataView
myDataview = DataView() myDataview = DataView()
myDataview.add_multi_query( myDataview.add_multi_query(
dataset_id=self._dataset_id, dataset_id=self._dataset_id,
@ -266,6 +278,8 @@ This example demonstrates an ROI query filtering for frames containing the ROI l
from two versions of one Dataset, and one version of another Dataset: from two versions of one Dataset, and one version of another Dataset:
```python ```python
from allegroai import DataView
# Add queries: # Add queries:
# The 1st Dataset version # The 1st Dataset version
@ -310,6 +324,8 @@ They use the same logical OR, AND, NOT AND matching as ROI queries.
This example demonstrates a frame query filtering for frames containing the meta key `city` value of `bremen`: This example demonstrates a frame query filtering for frames containing the meta key `city` value of `bremen`:
```python ```python
from allegroai import DataView
# Add a frame query for frames with the meta key "city" value of "bremen" # Add a frame query for frames with the meta key "city" value of "bremen"
myDataView.add_query( myDataView.add_query(
dataset_name='myDataset', dataset_name='myDataset',
@ -388,6 +404,8 @@ This example demonstrates creating a Dataview and setting its parameters to iter
manually terminated: manually terminated:
```python ```python
from allegroai import DataView, IterationOrder
# Create a Dataview object for an iterator that returns frames # Create a Dataview object for an iterator that returns frames
myDataView = DataView() myDataView = DataView()
@ -399,6 +417,8 @@ myDataView.set_iteration_parameters(order=IterationOrder.random, infinite=True)
This example demonstrates creating a DataView and setting its parameters to iterate and return all frames matching a query: This example demonstrates creating a DataView and setting its parameters to iterate and return all frames matching a query:
```python ```python
from allegroai import DataView, IterationOrder
# Create a Dataview object for an iterator for frames # Create a Dataview object for an iterator for frames
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=False) myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=False)
@ -425,6 +445,8 @@ This example demonstrates creating a Dataview and setting its parameters to iter
Dataset version contains fewer than that number of frames matching the query, then fewer are returned by the iterator. Dataset version contains fewer than that number of frames matching the query, then fewer are returned by the iterator.
```python ```python
from allegroai import DataView, IterationOrder
# Create a Dataview object for an iterator for frames # Create a Dataview object for an iterator for frames
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True) myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True)
@ -447,6 +469,8 @@ This example adjusts an imbalance in the input data to improve training for `Car
one ROI labeled with both `Car` and `largely_occluded` will be input. one ROI labeled with both `Car` and `largely_occluded` will be input.
```python ```python
from allegroai import DataView, IterationOrder
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True) myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True)
myDataView.add_query( myDataView.add_query(
@ -478,6 +502,8 @@ then use the labels you map **to** when setting enumeration values.
For example, if the labels `truck`, `van`, and `car` are mapped **to** `vehicle`, then set enumeration for `vehicle`. For example, if the labels `truck`, `van`, and `car` are mapped **to** `vehicle`, then set enumeration for `vehicle`.
```python ```python
from allegroai import DataView, IterationOrder
# Create a Dataview object for an iterator that randomly returns frames according to queries # Create a Dataview object for an iterator that randomly returns frames according to queries
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True) myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True)
@ -528,6 +554,8 @@ third uses `Car` (upper case "C").
The example maps `Car` (upper case "C") to `car` (lower case "c"): The example maps `Car` (upper case "C") to `car` (lower case "c"):
```python ```python
from allegroai import DataView, IterationOrder
# Create a Dataview object for an iterator that randomly returns frames according to queries # Create a Dataview object for an iterator that randomly returns frames according to queries
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True) myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True)
@ -567,6 +595,8 @@ Dataview objects can be retrieved by the Dataview ID or name using the [`DataVie
class method. class method.
```python ```python
from allegroai import DataView
my_dataview = DataView.get(dataview_id='<dataview_id>') my_dataview = DataView.get(dataview_id='<dataview_id>')
``` ```

View File

@ -1,5 +1,5 @@
--- ---
title: The Dataview table title: The Dataview Table
--- ---
The **Dataview table** is a [customizable](#customizing-the-dataview-table) list of Dataviews associated with a project. The **Dataview table** is a [customizable](#customizing-the-dataview-table) list of Dataviews associated with a project.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

View File

@ -22,7 +22,7 @@ title: Version 0.12
* Windows support! YES, you can now have Windows machines as part of your cluster (notice --docker is not supported on Windows). * Windows support! YES, you can now have Windows machines as part of your cluster (notice --docker is not supported on Windows).
* Add initial Conda package manager support (still in beta). * Add initial Conda package manager support (still in beta).
* Add --gpus and --cpu-only for easier GPU control when running multiple `trains-agent` instances on the same machine. * Add --gpus and --cpu-only for easier GPU control when running multiple `trains-agent` instances on the same machine.
* [python_binary](https://github.com/clearml/clearml-agent/blob/master/docs/trains.conf#L35) can now be specified (the default is the same Python binary executing the `trains-agent`). * [python_binary](https://github.com/clearml/clearml-agent/blob/831b36c4246bb4dfe150407461e0d01166bc6e92/docs/trains.conf#L35) can now be specified (the default is the same Python binary executing the `trains-agent`).
* Fix Issue ([GitHub Issue #2](https://github.com/clearml/clearml-agent/issues/2)). * Fix Issue ([GitHub Issue #2](https://github.com/clearml/clearml-agent/issues/2)).
### Trains Agent 0.12.0 ### Trains Agent 0.12.0

View File

@ -80,6 +80,7 @@ values from the file, which can be modified before launching the app instance
<div class="max-w-65"> <div class="max-w-65">
![llama deployment app form](../../img/apps_llama_form.png) ![llama deployment app form](../../img/apps_llama_form.png#light-mode-only)
![llama deployment app form](../../img/apps_llama_form.png#dark-mode-only)
</div> </div>