mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-27 07:58:50 +00:00
Rewrite AutoKeras integration page (#642)
This commit is contained in:
parent
1d5647ebb1
commit
3c8a31b61f
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: AutoKeras IMDB
|
||||
title: AutoKeras
|
||||
---
|
||||
The [autokeras_imdb_example.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/autokeras/autokeras_imdb_example.py) example
|
||||
script demonstrates the integration of ClearML into code, which uses [autokeras](https://github.com/keras-team/autokeras).
|
||||
|
@ -1,42 +0,0 @@
|
||||
---
|
||||
title: AutoKeras
|
||||
displayed_sidebar: mainSidebar
|
||||
---
|
||||
Integrate ClearML into code that uses [autokeras](https://github.com/keras-team/autokeras). Initialize a ClearML
|
||||
Task in a code, and ClearML automatically logs scalars, plots, and images reported to TensorBoard, Matplotlib, Plotly,
|
||||
and Seaborn, and all other automatic logging, and explicit reporting added to the code (see [Logging](../../../fundamentals/logger.md)).
|
||||
|
||||
ClearML allows to:
|
||||
|
||||
* Visualize experiment results in the **ClearML Web UI**.
|
||||
* Track and upload models.
|
||||
* Track model performance and create tracking leaderboards.
|
||||
* Rerun experiments, reproduce experiments on any target machine, and tune experiments.
|
||||
* Compare experiments.
|
||||
|
||||
See the [AutoKeras](autokeras_imdb_example.md) example, which shows ClearML automatically logging:
|
||||
* Scalars
|
||||
* Hyperparameters
|
||||
* The console log
|
||||
* Models.
|
||||
|
||||
Once these are logged, they can be visualized in the **ClearML Web UI**.
|
||||
|
||||
:::note
|
||||
If you are not already using ClearML, see [Getting Started](/getting_started/ds/best_practices.md).
|
||||
:::
|
||||
|
||||
## Adding ClearML to Code
|
||||
|
||||
Add two lines of code:
|
||||
```python
|
||||
from clearml import Task
|
||||
task = Task.init(project_name="myProject", task_name="myExperiment")
|
||||
```
|
||||
|
||||
When the code runs, it initializes a Task in ClearML Server. A hyperlink to the experiment's log is output to the console.
|
||||
|
||||
CLEARML Task: created new task id=c1f1dc6cf2ee4ec88cd1f6184344ca4e
|
||||
CLEARML results page: https://app.clear.ml/projects/1c7a45633c554b8294fa6dcc3b1f2d4d/experiments/c1f1dc6cf2ee4ec88cd1f6184344ca4e/output/log
|
||||
|
||||
Later in the code, define callbacks using TensorBoard, and ClearML logs TensorBoard scalars, histograms, and images.
|
117
docs/integrations/autokeras.md
Normal file
117
docs/integrations/autokeras.md
Normal file
@ -0,0 +1,117 @@
|
||||
---
|
||||
title: AutoKeras
|
||||
---
|
||||
|
||||
:::tip
|
||||
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md) for setup
|
||||
instructions.
|
||||
:::
|
||||
|
||||
ClearML integrates seamlessly with [AutoKeras](https://autokeras.com/), automatically logging its models and scalars.
|
||||
|
||||
All you have to do is simply add two lines of code to your AutoKeras script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
And that’s it! This creates a [ClearML Task](../fundamentals/task.md) which captures:
|
||||
* Source code and uncommitted changes
|
||||
* Installed packages
|
||||
* AutoKeras model files
|
||||
* Scalars (loss, learning rates)
|
||||
* Console output
|
||||
* General details such as machine details, runtime, creation date etc.
|
||||
* Hyperparameters created with standard python packages (e.g. argparse, click, Python Fire, etc.)
|
||||
* And more
|
||||
|
||||
You can view all the task details in the [WebApp](../webapp/webapp_exp_track_visual.md).
|
||||
|
||||
See an example of AutoKeras and ClearML in action [here](../guides/frameworks/autokeras/autokeras_imdb_example.md).
|
||||
|
||||

|
||||
|
||||
## Automatic Logging Control
|
||||
By default, when ClearML is integrated into your AutoKeras script, it captures AutoKeras models and scalars, as well as TensorFlow
|
||||
definitions and TensorBoard outputs. But, you may want to have more control over what your experiment logs.
|
||||
|
||||
To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit).
|
||||
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
|
||||
frameworks, input a dictionary, with framework-boolean pairs.
|
||||
|
||||
For example:
|
||||
|
||||
```python
|
||||
auto_connect_frameworks={
|
||||
'tensorflow': False, 'tensorboard': False, 'pytorch': True,
|
||||
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
|
||||
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
|
||||
'megengine': True, 'jsonargparse': True, 'catboost': False
|
||||
}
|
||||
```
|
||||
|
||||
To control AutoKeras logging, use the `tensorflow` and `tensorboard` keys.
|
||||
|
||||
You can also input wildcards as dictionary values, so ClearML will log a model created by a framework only if its local
|
||||
path matches at least one wildcard.
|
||||
|
||||
For example, in the code below, ClearML will log TensorFlow models only if their paths have the `.h5` extension. The
|
||||
unspecified frameworks' values default to true so all their models are automatically logged.
|
||||
|
||||
```python
|
||||
auto_connect_frameworks={'tensorflow' : '*.h5'}
|
||||
```
|
||||
|
||||
## Manual Logging
|
||||
To augment its automatic logging, ClearML also provides an explicit logging interface.
|
||||
|
||||
See more information about explicitly logging information to a ClearML Task:
|
||||
* [Models](../clearml_sdk/model_sdk.md#manually-logging-models)
|
||||
* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files)
|
||||
* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task)
|
||||
* [Scalars](../clearml_sdk/task_sdk.md#scalars)
|
||||
* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting)
|
||||
|
||||
See [Explicit Reporting Tutorial](../guides/reporting/explicit_reporting.md).
|
||||
|
||||
## Remote Execution
|
||||
ClearML logs all the information required to reproduce an experiment on a different machine (installed packages,
|
||||
uncommitted changes etc.). The [ClearML Agent](../clearml_agent) listens to designated queues and when a task is enqueued,
|
||||
the agent pulls it, recreates its execution environment, and runs it, reporting its scalars, plots, etc. to the
|
||||
experiment manager.
|
||||
|
||||
Deploy a ClearML Agent onto any machine (e.g. a cloud VM, a local GPU machine, your own laptop) by simply running the
|
||||
following command on it:
|
||||
|
||||
```commandline
|
||||
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
|
||||
```
|
||||
|
||||
Use the ClearML [Autoscalers](../cloud_autoscaling/autoscaling_overview.md), to help you manage cloud workloads in the
|
||||
cloud of your choice (AWS, GCP, Azure) and automatically deploy ClearML agents: the autoscaler automatically spins up
|
||||
and shuts down instances as needed, according to a resource budget that you set.
|
||||
|
||||
### Cloning, Editing, and Enqueuing
|
||||
|
||||

|
||||
|
||||
Use ClearML's web interface to edit task details, like configuration parameters or input models, then execute the task
|
||||
with the new configuration on a remote machine:
|
||||
|
||||
* Clone the experiment
|
||||
* Edit the hyperparameters and/or other details
|
||||
* Enqueue the task
|
||||
|
||||
The ClearML Agent executing the task will use the new values to [override any hard coded values](../clearml_agent).
|
||||
|
||||
### Executing a Task Remotely
|
||||
|
||||
You can set a task to be executed remotely programmatically by adding [`Task.execute_remotely()`](../references/sdk/task.md#execute_remotely)
|
||||
to your script. This method stops the current local execution of the task, and then enqueues it to a specified queue to
|
||||
re-run it on a remote machine.
|
||||
|
||||
```python
|
||||
# If executed locally, process will terminate, and a copy will be executed by an agent instead
|
||||
task.execute_remotely(queue_name='default', exit_process=True)
|
||||
```
|
@ -59,7 +59,7 @@ module.exports = {
|
||||
{'ClearML Serving':['clearml_serving/clearml_serving', 'clearml_serving/clearml_serving_setup', 'clearml_serving/clearml_serving_cli', 'clearml_serving/clearml_serving_tutorial']},
|
||||
{'CLI Tools': ['apps/clearml_session', 'apps/clearml_task', 'apps/clearml_param_search']},
|
||||
{'Integrations': [
|
||||
'guides/frameworks/autokeras/integration_autokeras',
|
||||
'integrations/autokeras',
|
||||
'integrations/catboost', 'integrations/click', 'guides/frameworks/fastai/fastai_with_tensorboard',
|
||||
'integrations/hydra',
|
||||
'integrations/keras', 'guides/frameworks/tensorflow/integration_keras_tuner',
|
||||
@ -147,7 +147,7 @@ module.exports = {
|
||||
{'Distributed': ['guides/distributed/distributed_pytorch_example', 'guides/distributed/subprocess_example']},
|
||||
{'Docker': ['guides/docker/extra_docker_shell_script']},
|
||||
{'Frameworks': [
|
||||
{'Autokeras': ['guides/frameworks/autokeras/integration_autokeras', 'guides/frameworks/autokeras/autokeras_imdb_example']},
|
||||
'guides/frameworks/autokeras/autokeras_imdb_example',
|
||||
'guides/frameworks/catboost/catboost',
|
||||
'guides/frameworks/fastai/fastai_with_tensorboard',
|
||||
{'Keras': ['guides/frameworks/keras/jupyter', 'guides/frameworks/keras/keras_tensorboard']},
|
||||
|
Loading…
Reference in New Issue
Block a user