diff --git a/docs/clearml_sdk/task_sdk.md b/docs/clearml_sdk/task_sdk.md index 50c277fa..9f7f0260 100644 --- a/docs/clearml_sdk/task_sdk.md +++ b/docs/clearml_sdk/task_sdk.md @@ -63,10 +63,10 @@ After invoking `Task.init` in a script, ClearML starts its automagical logging, * Command Line Parsing - ClearML captures any command line parameters passed when invoking code that uses standard python packages, including: * [click](../integrations/click.md) * [argparse](../guides/reporting/hyper_parameters.md#argparse-command-line-options) - * [Python Fire](https://github.com/allegroai/clearml/tree/master/examples/frameworks/fire) + * [Python Fire](../integrations/python_fire.md) * [LightningCLI](../integrations/pytorch_lightning.md) * TensorFlow Definitions (`absl-py`) - * [Hydra](../integrations/hydra.md) - the OmegaConf which holds all the configuration files, as well as overridden values. + * [Hydra](../integrations/hydra.md) - ClearML logs the OmegaConf which holds all the configuration files, as well as values overridden during runtime. * **Models** - ClearML automatically logs and updates the models and all snapshot paths saved with the following frameworks: * [TensorFlow](../integrations/tensorflow.md) * [Keras](../integrations/keras.md) diff --git a/docs/fundamentals/hyperparameters.md b/docs/fundamentals/hyperparameters.md index 7d09c6f9..7f1efd72 100644 --- a/docs/fundamentals/hyperparameters.md +++ b/docs/fundamentals/hyperparameters.md @@ -22,16 +22,16 @@ and tracks hyperparameters of various types, supporting automatic logging and ex Once a ClearML Task has been [initialized](../references/sdk/task.md#taskinit) in a script, ClearML automatically captures and tracks the following types of parameters: * Command line parsing - command line parameters passed when invoking code that uses standard python packages, including: - * [click](https://click.palletsprojects.com) - see code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/click/click_multi_cmd.py). - * [argparse](https://docs.python.org/3/library/argparse.html) - see code example [here](../guides/frameworks/pytorch/pytorch_tensorboardx.md). - * [Python Fire](https://github.com/google/python-fire) - see code examples [here](https://github.com/allegroai/clearml/tree/master/examples/frameworks/fire). - * [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli) - see code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/jsonargparse/pytorch_lightning_cli.py). + * [click](../integrations/click.md). + * [argparse](../guides/reporting/hyper_parameters.md#argparse-command-line-options). + * [Python Fire](../integrations/python_fire.md). + * [LightningCLI](../integrations/pytorch_lightning.md). * TensorFlow Definitions (`absl-py`). See examples of ClearML's automatic logging of TF Defines: * [TensorFlow MNIST](../guides/frameworks/tensorflow/tensorflow_mnist.md) * [TensorBoard PR Curve](../guides/frameworks/tensorflow/tensorboard_pr_curve.md) -* [Hydra](https://github.com/facebookresearch/hydra) - ClearML logs the `OmegaConf` which holds all the configuration files, - as well as values overridden during runtime. See code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/hydra/hydra_example.py). - +* [Hydra](../integrations/hydra.md) - ClearML logs the `OmegaConf` which holds all the configuration files, + as well as values overridden during runtime. + :::tip Disabling Automatic Logging Automatic logging can be disabled. See this [FAQ](../faq.md#controlling_logging). ::: diff --git a/docs/fundamentals/task.md b/docs/fundamentals/task.md index 8cea60d4..cf7ea7da 100644 --- a/docs/fundamentals/task.md +++ b/docs/fundamentals/task.md @@ -96,7 +96,7 @@ Most importantly, ClearML also logs experiments' input and output models as well #### Logging Artifacts ClearML provides an explicit logging interface that supports manually reporting a variety of artifacts. Any type of -artifact can be logged to a task using the [`Task.upload_artifact`](../references/sdk/task.md#upload_artifact) method. +artifact can be logged to a task using [`Task.upload_artifact()`](../references/sdk/task.md#upload_artifact). See more details in the [Artifacts Reporting example](../guides/reporting/artifacts.md). ClearML can be configured to upload artifacts to any of the supported types of storage, which include local and shared diff --git a/docs/guides/frameworks/pytorch/model_updating.md b/docs/guides/frameworks/pytorch/model_updating.md index fcb97610..ecd8ed28 100644 --- a/docs/guides/frameworks/pytorch/model_updating.md +++ b/docs/guides/frameworks/pytorch/model_updating.md @@ -67,7 +67,7 @@ model.update_design(config_dict=model_config_dict) ``` ## Updating Models -To update a model, use the [OutputModel.update_weights](../../../references/sdk/model_outputmodel.md#update_weights) method. +To update a model, use [`OutputModel.update_weights()`](../../../references/sdk/model_outputmodel.md#update_weights). This uploads the model to the set storage destination (see [Setting Upload Destination](../../../fundamentals/artifacts.md#setting-upload-destination)), and registers that location to the task as the output model.