From 218c54f691e7c29d4e70567073f5a6b47aa3e5da Mon Sep 17 00:00:00 2001 From: pollfly <75068813+pollfly@users.noreply.github.com> Date: Sun, 26 Jun 2022 09:27:34 +0300 Subject: [PATCH] Add ClearML Data parallel file transfer (#272) --- docs/clearml_data/clearml_data_sdk.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/docs/clearml_data/clearml_data_sdk.md b/docs/clearml_data/clearml_data_sdk.md index 57be73bd..01201988 100644 --- a/docs/clearml_data/clearml_data_sdk.md +++ b/docs/clearml_data/clearml_data_sdk.md @@ -88,6 +88,10 @@ Once a specific dataset object has been obtained, get a local copy of the datase of an entire dataset. This method downloads the dataset to a specific folder (non-cached), specified with the `target_folder` parameter. If the specified folder already has contents, specify whether to overwrite its contents with the dataset contents, using the `overwrite` parameter. +ClearML supports parallel downloading of datasets. Use the `max_workers` parameter of the `Dataset.get_local_copy` or +`Dataset.get_mutable_copy` methods to specify the number of threads to use when downloading the dataset. By default, it’s +the number of your machine’s logical cores. + ## Modifying Datasets Once a dataset has been created, its contents can be modified and replaced. When your data is changed, you can @@ -162,9 +166,13 @@ dataset.remove_files(dataset_path="*.csv", recursive=True) ## Uploading Files To upload the dataset files to network storage, use the [`Dataset.upload`](../references/sdk/dataset.md#upload) method. + Use the `output_url` parameter to specify storage target, such as S3 / GS / Azure (e.g. `s3://bucket/data`, `gs://bucket/data`, `azure://bucket/data` , `/mnt/share/data`). By default, the dataset uploads to ClearML's file server. +ClearML supports parallel uploading of datasets. Use the `max_workers` parameter to specify the number of threads to use +when uploading the dataset. By default, it’s the number of your machine’s logical cores. + Dataset files must be uploaded before a dataset is [finalized](#finalizing-a-dataset).