mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-15 21:24:25 +00:00
Merge branch 'main' of https://github.com/allegroai/clearml-docs
This commit is contained in:
commit
1d4c890320
@ -129,7 +129,7 @@ and ClearML Server needs to be installed.
|
||||
1. Add the `clearml-server` repository to Helm client.
|
||||
|
||||
```
|
||||
helm repo add allegroai https://allegroai.github.io/clearml-server-helm/
|
||||
helm repo add clearml https://clearml.github.io/clearml-server-helm/
|
||||
```
|
||||
|
||||
Confirm the `clearml-server` repository is now in the Helm client.
|
||||
|
@ -136,7 +136,7 @@ Deploying the server requires a minimum of 8 GB of memory, 16 GB is recommended.
|
||||
|
||||
2. Download the ClearML Server docker-compose YAML file.
|
||||
```
|
||||
sudo curl https://raw.githubusercontent.com/allegroai/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
sudo curl https://raw.githubusercontent.com/clearml/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
```
|
||||
1. For Linux only, configure the **ClearML Agent Services**:
|
||||
|
||||
|
@ -57,7 +57,7 @@ Deploying the server requires a minimum of 8 GB of memory, 16 GB is recommended.
|
||||
1. Save the ClearML Server docker-compose YAML file.
|
||||
|
||||
```
|
||||
curl https://raw.githubusercontent.com/allegroai/clearml-server/master/docker/docker-compose-win10.yml -o c:\opt\clearml\docker-compose-win10.yml
|
||||
curl https://raw.githubusercontent.com/clearml/clearml-server/master/docker/docker-compose-win10.yml -o c:\opt\clearml\docker-compose-win10.yml
|
||||
```
|
||||
|
||||
1. Run `docker-compose`. In PowerShell, execute the following commands:
|
||||
|
@ -12,8 +12,8 @@ This guide details the installation of the ClearML AI Application Gateway, speci
|
||||
|
||||
* Kubernetes cluster: `>= 1.21.0-0 < 1.32.0-0`
|
||||
* Helm installed and configured
|
||||
* Helm token to access allegroai helm-chart repo
|
||||
* Credentials for allegroai docker repo
|
||||
* Helm token to access `allegroai` helm-chart repo
|
||||
* Credentials for `allegroai` docker repo
|
||||
* A valid ClearML Server installation
|
||||
|
||||
## Optional for HTTPS
|
||||
@ -27,7 +27,7 @@ This guide details the installation of the ClearML AI Application Gateway, speci
|
||||
|
||||
```
|
||||
helm repo add allegroai-enterprise \
|
||||
https://raw.githubusercontent.com/allegroai/clearml-enterprise-helm-charts/gh-pages \
|
||||
https://raw.githubusercontent.com/clearml/clearml-enterprise-helm-charts/gh-pages \
|
||||
--username <GITHUB_TOKEN> \
|
||||
--password <GITHUB_TOKEN>
|
||||
```
|
||||
|
@ -49,7 +49,7 @@ If upgrading from Trains Server version 0.15 or older, a data migration is requi
|
||||
1. Download the latest `docker-compose.yml` file. Execute the following command:
|
||||
|
||||
```
|
||||
sudo curl https://raw.githubusercontent.com/allegroai/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
sudo curl https://raw.githubusercontent.com/clearml/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
```
|
||||
|
||||
1. Startup ClearML Server. This automatically pulls the latest ClearML Server build.
|
||||
|
@ -38,7 +38,7 @@ you can proceed to upgrade to v2.x.
|
||||
1. Download the latest `docker-compose.yml` file:
|
||||
|
||||
```
|
||||
curl https://raw.githubusercontent.com/allegroai/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
curl https://raw.githubusercontent.com/clearml/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
```
|
||||
|
||||
1. Startup ClearML Server. This automatically pulls the latest ClearML Server build.
|
||||
|
@ -7,13 +7,13 @@ title: Kubernetes
|
||||
|
||||
```bash
|
||||
helm repo update
|
||||
helm upgrade clearml allegroai/clearml
|
||||
helm upgrade clearml clearml/clearml
|
||||
```
|
||||
|
||||
**To change the values in an existing installation,** execute the following:
|
||||
|
||||
```bash
|
||||
helm upgrade clearml allegroai/clearml --version <CURRENT CHART VERSION> -f custom_values.yaml
|
||||
helm upgrade clearml clearml/clearml --version <CURRENT CHART VERSION> -f custom_values.yaml
|
||||
```
|
||||
|
||||
See the [clearml-helm-charts repository](https://github.com/clearml/clearml-helm-charts/tree/main/charts/clearml#local-environment)
|
||||
|
@ -59,7 +59,7 @@ For backwards compatibility, the environment variables ``TRAINS_HOST_IP``, ``TRA
|
||||
1. Download the latest `docker-compose.yml` file:
|
||||
|
||||
```
|
||||
curl https://raw.githubusercontent.com/allegroai/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
curl https://raw.githubusercontent.com/clearml/clearml-server/master/docker/docker-compose.yml -o /opt/clearml/docker-compose.yml
|
||||
```
|
||||
|
||||
1. Startup ClearML Server. This automatically pulls the latest ClearML Server build:
|
||||
|
@ -49,7 +49,7 @@ you can proceed to upgrade to v2.x.
|
||||
1. Download the latest `docker-compose.yml` file:
|
||||
|
||||
```
|
||||
curl https://raw.githubusercontent.com/allegroai/clearml-server/master/docker/docker-compose-win10.yml -o c:\opt\clearml\docker-compose-win10.yml
|
||||
curl https://raw.githubusercontent.com/clearml/clearml-server/master/docker/docker-compose-win10.yml -o c:\opt\clearml\docker-compose-win10.yml
|
||||
```
|
||||
|
||||
1. Startup ClearML Server. This automatically pulls the latest ClearML Server build.
|
||||
|
@ -32,19 +32,19 @@ training, and deploying models at every scale on any AI infrastructure.
|
||||
<tbody>
|
||||
<tr>
|
||||
<td><a href="https://github.com/clearml/clearml/blob/master/docs/tutorials/Getting_Started_1_Experiment_Management.ipynb"><b>Step 1</b></a> - Experiment Management</td>
|
||||
<td className="align-center"><a className="no-ext-icon" target="_blank" href="https://colab.research.google.com/github/allegroai/clearml/blob/master/docs/tutorials/Getting_Started_1_Experiment_Management.ipynb">
|
||||
<td className="align-center"><a className="no-ext-icon" target="_blank" href="https://colab.research.google.com/github/clearml/clearml/blob/master/docs/tutorials/Getting_Started_1_Experiment_Management.ipynb">
|
||||
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
||||
</a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://github.com/clearml/clearml/blob/master/docs/tutorials/Getting_Started_2_Setting_Up_Agent.ipynb"><b>Step 2</b></a> - Remote Execution Agent Setup</td>
|
||||
<td className="align-center"><a className="no-ext-icon" target="_blank" href="https://colab.research.google.com/github/allegroai/clearml/blob/master/docs/tutorials/Getting_Started_2_Setting_Up_Agent.ipynb">
|
||||
<td className="align-center"><a className="no-ext-icon" target="_blank" href="https://colab.research.google.com/github/clearml/clearml/blob/master/docs/tutorials/Getting_Started_2_Setting_Up_Agent.ipynb">
|
||||
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
||||
</a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://github.com/clearml/clearml/blob/master/docs/tutorials/Getting_Started_3_Remote_Execution.ipynb"><b>Step 3</b></a> - Remotely Execute Tasks</td>
|
||||
<td className="align-center"><a className="no-ext-icon" target="_blank" href="https://colab.research.google.com/github/allegroai/clearml/blob/master/docs/tutorials/Getting_Started_3_Remote_Execution.ipynb">
|
||||
<td className="align-center"><a className="no-ext-icon" target="_blank" href="https://colab.research.google.com/github/clearml/clearml/blob/master/docs/tutorials/Getting_Started_3_Remote_Execution.ipynb">
|
||||
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
||||
</a></td>
|
||||
</tr>
|
||||
|
@ -49,7 +49,7 @@ Execution log at: https://app.clear.ml/projects/552d5399112d47029c146d5248570295
|
||||
### Executing a Local Script
|
||||
|
||||
For this example, use a local version of [this script](https://github.com/clearml/events/blob/master/webinar-0620/keras_mnist.py).
|
||||
1. Clone the [allegroai/events](https://github.com/clearml/events) repository
|
||||
1. Clone the [clearml/events](https://github.com/clearml/events) repository
|
||||
1. Go to the root folder of the cloned repository
|
||||
1. Run the following command:
|
||||
|
||||
|
@ -16,7 +16,7 @@ and running, users can send Tasks to be executed on Google Colab's hardware.
|
||||
|
||||
|
||||
## Steps
|
||||
1. Open up [this Google Colab notebook](https://colab.research.google.com/github/allegroai/clearml/blob/master/examples/clearml_agent/clearml_colab_agent.ipynb).
|
||||
1. Open up [this Google Colab notebook](https://colab.research.google.com/github/clearml/clearml/blob/master/examples/clearml_agent/clearml_colab_agent.ipynb).
|
||||
|
||||
1. Run the first cell, which installs all the necessary packages:
|
||||
```
|
||||
|
@ -3,7 +3,7 @@ title: Pipeline from Decorators
|
||||
---
|
||||
|
||||
The [pipeline_from_decorator.py](https://github.com/clearml/clearml/blob/master/examples/pipeline/pipeline_from_decorator.py)
|
||||
example demonstrates the creation of a pipeline in ClearML using the [`PipelineDecorator`](../../references/sdk/automation_controller_pipelinecontroller.md#class-automationcontrollerpipelinedecorator)
|
||||
example demonstrates the creation of a pipeline in ClearML using the [`PipelineDecorator`](../../references/sdk/automation_controller_pipelinedecorator.md#class-automationcontrollerpipelinedecorator)
|
||||
class.
|
||||
|
||||
This example creates a pipeline incorporating four tasks, each of which is created from a Python function using a custom decorator:
|
||||
@ -14,11 +14,11 @@ This example creates a pipeline incorporating four tasks, each of which is creat
|
||||
* `step_four` - Uses data from `step_two` and the model from `step_three` to make a prediction.
|
||||
|
||||
The pipeline steps, defined in the `step_one`, `step_two`, `step_three`, and `step_four` functions, are each wrapped with the
|
||||
[`@PipelineDecorator.component`](../../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorcomponent)
|
||||
[`@PipelineDecorator.component`](../../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorcomponent)
|
||||
decorator, which creates a ClearML pipeline step for each one when the pipeline is executed.
|
||||
|
||||
The logic that executes these steps and controls the interaction between them is implemented in the `executing_pipeline`
|
||||
function. This function is wrapped with the [`@PipelineDecorator.pipeline`](../../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorpipeline)
|
||||
function. This function is wrapped with the [`@PipelineDecorator.pipeline`](../../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorpipeline)
|
||||
decorator which creates the ClearML pipeline task when it is executed.
|
||||
|
||||
The sections below describe in more detail what happens in the pipeline controller and steps.
|
||||
@ -28,7 +28,7 @@ The sections below describe in more detail what happens in the pipeline controll
|
||||
In this example, the pipeline controller is implemented by the `executing_pipeline` function.
|
||||
|
||||
Using the `@PipelineDecorator.pipeline` decorator creates a ClearML Controller Task from the function when it is executed.
|
||||
For detailed information, see [`@PipelineDecorator.pipeline`](../../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorpipeline).
|
||||
For detailed information, see [`@PipelineDecorator.pipeline`](../../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorpipeline).
|
||||
|
||||
In the example script, the controller defines the interactions between the pipeline steps in the following way:
|
||||
1. The controller function passes its argument, `pickle_url`, to the pipeline's first step (`step_one`)
|
||||
@ -39,13 +39,13 @@ In the example script, the controller defines the interactions between the pipel
|
||||
|
||||
:::info Local Execution
|
||||
In this example, the pipeline is set to run in local mode by using
|
||||
[`PipelineDecorator.run_locally()`](../../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorrun_locally)
|
||||
[`PipelineDecorator.run_locally()`](../../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorrun_locally)
|
||||
before calling the pipeline function. See pipeline execution options [here](../../pipelines/pipelines_sdk_function_decorators.md#running-the-pipeline).
|
||||
:::
|
||||
|
||||
## Pipeline Steps
|
||||
Using the `@PipelineDecorator.component` decorator will make the function a pipeline component that can be called from the
|
||||
pipeline controller, which implements the pipeline's execution logic. For detailed information, see [`@PipelineDecorator.component`](../../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorcomponent).
|
||||
pipeline controller, which implements the pipeline's execution logic. For detailed information, see [`@PipelineDecorator.component`](../../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorcomponent).
|
||||
|
||||
When the pipeline controller calls a pipeline step, a corresponding ClearML task will be created. Notice that all package
|
||||
imports inside the function will be automatically logged as required packages for the pipeline execution step.
|
||||
@ -63,7 +63,7 @@ executing_pipeline(
|
||||
```
|
||||
|
||||
By default, the pipeline controller and the pipeline steps are launched through ClearML [queues](../../fundamentals/agents_and_queues.md#what-is-a-queue).
|
||||
Use the [`PipelineDecorator.set_default_execution_queue`](../../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorset_default_execution_queue)
|
||||
Use the [`PipelineDecorator.set_default_execution_queue`](../../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorset_default_execution_queue)
|
||||
method to specify the execution queue of all pipeline steps. The `execution_queue` parameter of the `@PipelineDecorator.component`
|
||||
decorator overrides the default queue value for the specific step for which it was specified.
|
||||
|
||||
|
@ -22,7 +22,7 @@ The Slack API token and channel you create are required to configure the Slack a
|
||||
1. In **Development Slack Workspace**, select a workspace.
|
||||
1. Click **Create App**.
|
||||
1. In **Basic Information**, under **Display Information**, complete the following:
|
||||
- In **Short description**, enter "Allegro Train Bot".
|
||||
- In **Short description**, enter "ClearML Train Bot".
|
||||
- In **Background color**, enter "#202432".
|
||||
1. Click **Save Changes**.
|
||||
1. In **OAuth & Permissions**, under **Scopes**, click **Add an OAuth Scope**, and then select the following permissions
|
||||
|
@ -4,14 +4,14 @@ title: PipelineDecorator
|
||||
|
||||
## Creating Pipelines Using Function Decorators
|
||||
|
||||
Use the [`PipelineDecorator`](../references/sdk/automation_controller_pipelinecontroller.md#class-automationcontrollerpipelinedecorator)
|
||||
class to create pipelines from your existing functions. Use [`@PipelineDecorator.component`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorcomponent)
|
||||
to denote functions that comprise the steps of your pipeline, and [`@PipelineDecorator.pipeline`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorpipeline)
|
||||
Use the [`PipelineDecorator`](../references/sdk/automation_controller_pipelinedecorator.md#class-automationcontrollerpipelinedecorator)
|
||||
class to create pipelines from your existing functions. Use [`@PipelineDecorator.component`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorcomponent)
|
||||
to denote functions that comprise the steps of your pipeline, and [`@PipelineDecorator.pipeline`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorpipeline)
|
||||
for your main pipeline execution logic function.
|
||||
|
||||
## @PipelineDecorator.pipeline
|
||||
|
||||
Using the [`@PipelineDecorator.pipeline`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorpipeline)
|
||||
Using the [`@PipelineDecorator.pipeline`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorpipeline)
|
||||
decorator transforms the function which implements your pipeline's execution logic to a ClearML pipeline controller,
|
||||
an independently executed task.
|
||||
|
||||
@ -70,13 +70,13 @@ parameters. When launching a new pipeline run from the [UI](../webapp/pipelines/
|
||||

|
||||
|
||||
## @PipelineDecorator.component
|
||||
Using the [`@PipelineDecorator.component`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorcomponent)
|
||||
Using the [`@PipelineDecorator.component`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorcomponent)
|
||||
decorator transforms a function into a ClearML pipeline step when called from a pipeline controller.
|
||||
|
||||
When the pipeline controller calls a pipeline step, a corresponding ClearML task is created.
|
||||
|
||||
:::tip Package Imports
|
||||
In the case that the `skip_global_imports` parameter of [`@PipelineDecorator.pipeline`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorpipeline)
|
||||
In the case that the `skip_global_imports` parameter of [`@PipelineDecorator.pipeline`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorpipeline)
|
||||
is set to `False`, all global imports will be automatically imported at the beginning of each step's execution.
|
||||
Otherwise, if set to `True`, make sure that each function which makes up a pipeline step contains package imports, which
|
||||
are automatically logged as required packages for the pipeline execution step.
|
||||
@ -110,7 +110,7 @@ def step_one(pickle_data_url: str, extra: int = 43):
|
||||
* `packages` - A list of required packages or a local requirements.txt file. Example: `["tqdm>=2.1", "scikit-learn"]` or
|
||||
`"./requirements.txt"`. If not provided, packages are automatically added based on the imports used inside the function.
|
||||
* `execution_queue` (optional) - Queue in which to enqueue the specific step. This overrides the queue set with the
|
||||
[`PipelineDecorator.set_default_execution_queue method`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorset_default_execution_queue)
|
||||
[`PipelineDecorator.set_default_execution_queue method`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorset_default_execution_queue)
|
||||
method.
|
||||
* `continue_on_fail` - If `True`, a failed step does not cause the pipeline to stop (or marked as failed). Notice, that
|
||||
steps that are connected (or indirectly connected) to the failed step are skipped (default `False`)
|
||||
@ -186,14 +186,14 @@ specify which frameworks to log. See `Task.init`'s [`auto_connect_framework` par
|
||||
* `auto_connect_arg_parser` - Control automatic logging of argparse objects. See `Task.init`'s [`auto_connect_arg_parser` parameter](../references/sdk/task.md#taskinit)
|
||||
|
||||
You can also directly upload a model or an artifact from the step to the pipeline controller, using the
|
||||
[`PipelineDecorator.upload_model`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorupload_model)
|
||||
and [`PipelineDecorator.upload_artifact`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorupload_artifact)
|
||||
[`PipelineDecorator.upload_model`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorupload_model)
|
||||
and [`PipelineDecorator.upload_artifact`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorupload_artifact)
|
||||
methods respectively.
|
||||
|
||||
|
||||
## Controlling Pipeline Execution
|
||||
### Default Execution Queue
|
||||
The [`PipelineDecorator.set_default_execution_queue`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorset_default_execution_queue)
|
||||
The [`PipelineDecorator.set_default_execution_queue`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorset_default_execution_queue)
|
||||
method lets you set a default queue through which all pipeline steps
|
||||
will be executed. Once set, step-specific overrides can be specified through the `@PipelineDecorator.component` decorator.
|
||||
|
||||
@ -226,7 +226,7 @@ You can run the pipeline logic locally, while keeping the pipeline components ex
|
||||
#### Debugging Mode
|
||||
In debugging mode, the pipeline controller and all components are treated as regular Python functions, with components
|
||||
called synchronously. This mode is great to debug the components and design the pipeline as the entire pipeline is
|
||||
executed on the developer machine with full ability to debug each function call. Call [`PipelineDecorator.debug_pipeline`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratordebug_pipeline)
|
||||
executed on the developer machine with full ability to debug each function call. Call [`PipelineDecorator.debug_pipeline`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratordebug_pipeline)
|
||||
before the main pipeline logic function call.
|
||||
|
||||
Example:
|
||||
@ -242,7 +242,7 @@ In local mode, the pipeline controller creates Tasks for each component, and com
|
||||
into sub-processes running on the same machine. Notice that the data is passed between the components and the logic with
|
||||
the exact same mechanism as in the remote mode (i.e. hyperparameters / artifacts), with the exception that the execution
|
||||
itself is local. Notice that each subprocess is using the exact same Python environment as the main pipeline logic. Call
|
||||
[`PipelineDecorator.run_locally`](../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorrun_locally)
|
||||
[`PipelineDecorator.run_locally`](../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorrun_locally)
|
||||
before the main pipeline logic function.
|
||||
|
||||
Example:
|
||||
|
@ -0,0 +1,5 @@
|
||||
---
|
||||
title: PipelineDecorator
|
||||
---
|
||||
|
||||
**AutoGenerated PlaceHolder**
|
@ -36,7 +36,7 @@ The pipeline run table contains the following columns:
|
||||
| Column | Description | Type |
|
||||
|---|---|---|
|
||||
| **RUN** | Pipeline run identifier | String |
|
||||
| **VERSION** | The pipeline version number. Corresponds to the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md#class-pipelinecontroller)'s and [PipelineDecorator](../../references/sdk/automation_controller_pipelinecontroller.md#class-automationcontrollerpipelinedecorator)'s `version` parameter | Version string |
|
||||
| **VERSION** | The pipeline version number. Corresponds to the [PipelineController](../../references/sdk/automation_controller_pipelinecontroller.md#class-pipelinecontroller)'s and [PipelineDecorator](../../references/sdk/automation_controller_pipelinedecorator.md#class-automationcontrollerpipelinedecorator)'s `version` parameter | Version string |
|
||||
| **TAGS** | Descriptive, user-defined, color-coded tags assigned to run. | Tag |
|
||||
| **STATUS** | Pipeline run's status. See a list of the [task states and state transitions](../../fundamentals/task.md#task-states). For Running, Failed, and Aborted runs, you will also see a progress indicator next to the status. See [here](../../pipelines/pipelines.md#tracking-pipeline-progress). | String |
|
||||
| **USER** | User who created the run. | String |
|
||||
|
@ -108,7 +108,7 @@ The details panel includes three tabs:
|
||||

|
||||
|
||||
* **Code** - For pipeline steps generated from functions using either [`PipelineController.add_function_step`](../../references/sdk/automation_controller_pipelinecontroller.md#add_function_step)
|
||||
or [`PipelineDecorator.component`](../../references/sdk/automation_controller_pipelinecontroller.md#pipelinedecoratorcomponent),
|
||||
or [`PipelineDecorator.component`](../../references/sdk/automation_controller_pipelinedecorator.md#pipelinedecoratorcomponent),
|
||||
you can view the selected step's code.
|
||||
|
||||

|
||||
|
@ -230,13 +230,13 @@ The **INFO** tab shows extended task information:
|
||||
* [Task description](#description)
|
||||
* [Task details](#task-details)
|
||||
|
||||
### Latest Events Log
|
||||
### Latest Events Log
|
||||
|
||||
:::important Enterprise Feature
|
||||
The latest events log is available under the ClearML Enterprise plan.
|
||||
:::info Hosted Service and Enterprise Feature
|
||||
The latest events log is available only on the ClearML Hosted Service and under the ClearML Enterprise plan.
|
||||
:::
|
||||
|
||||
The Enterprise Server also displays a detailed history of task activity:
|
||||
The **INFO** tab includes a detailed history of task activity:
|
||||
* Task action (e.g. status changes, project move, etc.)
|
||||
* Action time
|
||||
* Acting user
|
||||
@ -252,7 +252,7 @@ To download the task history as a CSV file, hover over the log and click <img sr
|
||||
ClearML maintains a system-wide, large but strict limit for task history items. Once the limit is reached, the oldest entries are purged to make room for fresh entries.
|
||||
:::
|
||||
|
||||
### Description
|
||||
### Description
|
||||
Add descriptive text to the task in the **Description** section. To modify the description, hover over the
|
||||
description box and click **Edit**.
|
||||
|
||||
@ -304,7 +304,7 @@ All scalars that ClearML automatically logs, as well as those explicitly reporte
|
||||
|
||||
Scalar series can be displayed in [graph view](#graph-view) (default) or in [metric values view](#metric-values-view):
|
||||
|
||||
#### Graph View
|
||||
#### Graph View
|
||||
Scalar graph view (<img src="/docs/latest/icons/ico-charts-view.svg" alt="Graph view" className="icon size-md space-sm" />)
|
||||
shows scalar series plotted as a time series line chart. By default, a single plot is shown for each scalar metric,
|
||||
with all variants overlaid within.
|
||||
|
@ -424,22 +424,22 @@ To add an image, add an exclamation point, followed by the alt text enclosed by
|
||||
image enclosed in parentheses:
|
||||
|
||||
```
|
||||

|
||||

|
||||
```
|
||||
|
||||
The rendered output should look like this:
|
||||
|
||||

|
||||

|
||||
|
||||
To add a title to the image, which you can see in a tooltip when hovering over the image, add the title after the image's
|
||||
link:
|
||||
|
||||
```
|
||||

|
||||

|
||||
```
|
||||
The rendered output should look like this:
|
||||
|
||||
<img src="https://raw.githubusercontent.com/allegroai/clearml/master/docs/clearml-logo.svg" alt="Logo with Title" title="ClearML logo"/>
|
||||
<img src="https://raw.githubusercontent.com/clearml/clearml/master/docs/clearml-logo.svg" alt="Logo with Title" title="ClearML logo"/>
|
||||
|
||||
Hover over the image to see its title.
|
||||
|
||||
|
@ -399,8 +399,10 @@ module.exports = {
|
||||
'references/sdk/dataset',
|
||||
{'Pipeline': [
|
||||
'references/sdk/automation_controller_pipelinecontroller',
|
||||
'references/sdk/automation_controller_pipelinedecorator',
|
||||
'references/sdk/automation_job_clearmljob'
|
||||
]},
|
||||
]
|
||||
},
|
||||
'references/sdk/scheduler',
|
||||
'references/sdk/trigger',
|
||||
{'HyperParameter Optimization': [
|
||||
|
Loading…
Reference in New Issue
Block a user