mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-12 07:02:25 +00:00
Small edits (#144)
This commit is contained in:
parent
6962630aaa
commit
16ffa620b6
@ -41,7 +41,7 @@ and [configuration options](configs/clearml_conf.md#agent-section).
|
||||
## Installation
|
||||
|
||||
:::note
|
||||
If **ClearML** was previously configured, follow [this](clearml_agent#adding-clearml-agent-to-a-configuration-file) to add
|
||||
If **ClearML** was previously configured, follow [this](#adding-clearml-agent-to-a-configuration-file) to add
|
||||
ClearML Agent specific configurations
|
||||
:::
|
||||
|
||||
|
@ -50,7 +50,7 @@ The minimum recommended amount of RAM is 8 GB. For example, a t3.large or t3a.la
|
||||
|
||||
1. Open the AWS Marketplace for the [Allegro AI ClearML Server](https://aws.amazon.com/marketplace/pp/B085D8W5NM).
|
||||
1. In the heading area, click **Continue to Subscribe**.
|
||||
1. **On the Subscribe to software** page, click **Accept Terms**, and then click **Continue to Configuration**.
|
||||
1. On the **Subscribe to software** page, click **Accept Terms**, and then click **Continue to Configuration**.
|
||||
1. On the **Configure this software** page, complete the following:
|
||||
|
||||
1. In the **Fulfillment Option** list, select **64-bit (x86) Amazon Machine Image (AMI)**.
|
||||
|
@ -155,7 +155,7 @@ def main(pickle_url, mock_parameter='mock'):
|
||||
X_train, X_test, y_train, y_test = step_two(data_frame)
|
||||
model = step_three(X_train, y_train)
|
||||
accuracy = 100 * step_four(model, X_data=X_test, Y_data=y_test)
|
||||
print(f‘Accuracy={accuracy}%’)
|
||||
print(f"Accuracy={accuracy}%")
|
||||
```
|
||||
|
||||
Notice that the driver is the `main` function, calling ("launching") the different steps. Next we add the decorators over
|
||||
@ -222,7 +222,7 @@ def main(pickle_url, mock_parameter='mock'):
|
||||
X_train, X_test, y_train, y_test = step_two(data_frame)
|
||||
model = step_three(X_train, y_train)
|
||||
accuracy = 100 * step_four(model, X_data=X_test, Y_data=y_test)
|
||||
print(f‘Accuracy={accuracy}%’)
|
||||
print(f"Accuracy={accuracy}%")
|
||||
```
|
||||
|
||||
We wrap each pipeline component with `@PipelineDecorator.component`, and the main pipeline logic with
|
||||
|
@ -34,7 +34,7 @@ Make datasets machine agnostic (i.e. store original dataset in a shared storage
|
||||
ClearML Data supports efficient Dataset storage and caching, differentiable & compressed.
|
||||
|
||||
## Scale Your Work
|
||||
Use [ClearML Agent](../../clearml_agent.md) to scale work. Install the agent machines (Remote or local) and manage
|
||||
Use [ClearML Agent](../../clearml_agent.md) to scale work. Install the agent machines (remote or local) and manage
|
||||
training workload with it.
|
||||
|
||||
Improve team collaboration by transparent resource monitoring, always know what is running where.
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Fastai
|
||||
title: FastAI
|
||||
---
|
||||
The [fastai_with_tensorboard.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/fastai/fastai_with_tensorboard.py)
|
||||
example demonstrates the integration of **ClearML** into code that uses fastai and TensorBoard.
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: MegEngine MNIST
|
||||
title: MegEngine
|
||||
---
|
||||
|
||||
The [megengine_mnist.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/megengine/megengine_mnist.py)
|
||||
|
@ -15,12 +15,14 @@ When the script runs, it creates an experiment named `html samples reporting`, w
|
||||
|
||||
## Reporting HTML URLs
|
||||
|
||||
Report HTML by URL, using the `Logger.report_media` method `url` parameter.
|
||||
Report HTML by URL, using the [Logger.report_media](../../references/sdk/logger.md#report_media) method's `url` parameter.
|
||||
|
||||
See the example script's [report_html_url](https://github.com/allegroai/clearml/blob/master/examples/reporting/html_reporting.py#L16)
|
||||
function, which reports the **ClearML** documentation's home page.
|
||||
|
||||
Logger.current_logger().report_media("html", "url_html", iteration=iteration, url="https://allegro.ai/docs/index.html")
|
||||
```python
|
||||
Logger.current_logger().report_media("html", "url_html", iteration=iteration, url="https://clear.ml/docs")
|
||||
```
|
||||
|
||||
## Reporting HTML Local Files
|
||||
|
||||
|
@ -10,10 +10,10 @@ demonstrates reporting (uploading) images in several formats, including:
|
||||
* PIL Image objects
|
||||
* Local files.
|
||||
|
||||
**ClearML** uploads images to the bucket specified in the **ClearML** configuration file
|
||||
or **ClearML** can be configured for image storage, see [Logger.set_default_upload_destination](../../references/sdk/logger.md#set_default_upload_destination)
|
||||
ClearML uploads images to the bucket specified in the ClearML [configuration file](../../configs/clearml_conf.md),
|
||||
or ClearML can be configured for image storage, see [Logger.set_default_upload_destination](../../references/sdk/logger.md#set_default_upload_destination)
|
||||
(storage for [artifacts](../../fundamentals/artifacts.md#setting-upload-destination) is different). Set credentials for
|
||||
storage in the **ClearML** configuration file.
|
||||
storage in the ClearML configuration file.
|
||||
|
||||
When the script runs, it creates an experiment named `image reporting`, which is associated with the `examples` project.
|
||||
|
||||
@ -48,7 +48,7 @@ Logger.current_logger().report_image(
|
||||
)
|
||||
```
|
||||
|
||||
**ClearML** reports these images as debug samples in the **ClearML Web UI** **>** experiment details **>** **RESULTS** tab
|
||||
ClearML reports these images as debug samples in the **ClearML Web UI** **>** experiment details **>** **RESULTS** tab
|
||||
**>** **DEBUG SAMPLES** sub-tab.
|
||||
|
||||

|
||||
|
@ -5,8 +5,8 @@ title: Manual Matplotlib Reporting
|
||||
The [matplotlib_manual_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/matplotlib_manual_reporting.py)
|
||||
example demonstrates reporting using Matplotlib and Seaborn with **ClearML**.
|
||||
|
||||
When the script runs, it creates an experiment named "Manual Matplotlib example", which is associated with the
|
||||
examples project.
|
||||
When the script runs, it creates an experiment named `Manual Matplotlib example`, which is associated with the
|
||||
`examples` project.
|
||||
|
||||
The Matplotlib figure reported by calling the [Logger.report_matplotlib_figure](../../references/sdk/logger.md#report_matplotlib_figure)
|
||||
method appears in **RESULTS** **>** **PLOTS**.
|
||||
|
@ -7,7 +7,7 @@ through parametrized data access and meta-data version control.
|
||||
|
||||
The basic premise is that a user-formed query is a full representation of the dataset used by the ML/DL process.
|
||||
|
||||
ClearML Enterprise's hyperdatasets supports rapid prototyping, creating new opportunities such as:
|
||||
ClearML Enterprise's Hyper-Datasets supports rapid prototyping, creating new opportunities such as:
|
||||
* Hyperparameter optimization of the data itself
|
||||
* QA/QC pipelining
|
||||
* CD/CT (continuous training) during deployment
|
||||
@ -28,7 +28,7 @@ These components interact in a way that enables revising data and tracking and a
|
||||
|
||||
Frames are the basics units of data in ClearML Enterprise. SingleFrames and FrameGroups make up a Dataset version.
|
||||
Dataset versions can be created, modified, and removed. The different version are recorded and available,
|
||||
so experiments and their data are reproducible and traceable.
|
||||
so experiments, and their data are reproducible and traceable.
|
||||
|
||||
Lastly, Dataviews manage views of the dataset with queries, so the input data to an experiment can be defined from a
|
||||
subset of a Dataset or combinations of Datasets.
|
12
sidebars.js
12
sidebars.js
@ -67,11 +67,11 @@ module.exports = {
|
||||
{'Docker': ['guides/docker/extra_docker_shell_script']},
|
||||
{'Frameworks': [
|
||||
{'Autokeras': ['guides/frameworks/autokeras/integration_autokeras', 'guides/frameworks/autokeras/autokeras_imdb_example']},
|
||||
{'FastAI': ['guides/frameworks/fastai/fastai_with_tensorboard']},
|
||||
'guides/frameworks/fastai/fastai_with_tensorboard',
|
||||
{'Keras': ['guides/frameworks/keras/jupyter', 'guides/frameworks/keras/keras_tensorboard']},
|
||||
{'LightGBM': ['guides/frameworks/lightgbm/lightgbm_example']},
|
||||
{'Matplotlib': ['guides/frameworks/matplotlib/matplotlib_example']},
|
||||
{'MegEngine':['guides/frameworks/megengine/megengine_mnist']},
|
||||
'guides/frameworks/lightgbm/lightgbm_example',
|
||||
'guides/frameworks/matplotlib/matplotlib_example',
|
||||
'guides/frameworks/megengine/megengine_mnist',
|
||||
{'PyTorch':
|
||||
['guides/frameworks/pytorch/pytorch_distributed_example', 'guides/frameworks/pytorch/pytorch_matplotlib',
|
||||
'guides/frameworks/pytorch/pytorch_mnist', 'guides/frameworks/pytorch/pytorch_tensorboard', 'guides/frameworks/pytorch/pytorch_tensorboardx',
|
||||
@ -85,14 +85,14 @@ module.exports = {
|
||||
]
|
||||
},
|
||||
{'PyTorch Ignite': ['guides/frameworks/pytorch ignite/integration_pytorch_ignite', 'guides/frameworks/pytorch ignite/pytorch_ignite_mnist']},
|
||||
{'PyTorch Lightning': ['guides/frameworks/pytorch_lightning/pytorch_lightning_example']},
|
||||
'guides/frameworks/pytorch_lightning/pytorch_lightning_example',
|
||||
{'Scikit-Learn': ['guides/frameworks/scikit-learn/sklearn_joblib_example', 'guides/frameworks/scikit-learn/sklearn_matplotlib_example']},
|
||||
{'TensorBoardX': ['guides/frameworks/tensorboardx/tensorboardx', "guides/frameworks/tensorboardx/video_tensorboardx"]},
|
||||
{
|
||||
'Tensorflow': ['guides/frameworks/tensorflow/tensorboard_pr_curve', 'guides/frameworks/tensorflow/tensorboard_toy',
|
||||
'guides/frameworks/tensorflow/tensorflow_mnist', 'guides/frameworks/tensorflow/integration_keras_tuner']
|
||||
},
|
||||
{'XGboost': ['guides/frameworks/xgboost/xgboost_sample']}
|
||||
'guides/frameworks/xgboost/xgboost_sample'
|
||||
]},
|
||||
{'IDEs': ['guides/ide/remote_jupyter_tutorial', 'guides/ide/integration_pycharm', 'guides/ide/google_colab']},
|
||||
{'Offline Mode':['guides/set_offline']},
|
||||
|
Loading…
Reference in New Issue
Block a user