mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-03 10:42:51 +00:00
Add new heading to ClearML Session example (#46)
This commit is contained in:
parent
0048cea0d8
commit
0767ffdd85
@ -16,32 +16,33 @@ where a `clearml-agent` will run and spin an instance of the remote session.
|
||||
|
||||
|
||||
## Steps
|
||||
1. Execute the `clearml-session` command with the following command line options:
|
||||
|
||||
```bash
|
||||
clearml-session --docker nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 --packages "clearml" "tensorflow>=2.2" "keras" --queue default
|
||||
```
|
||||
### Step 1: Launch `clearml-session`
|
||||
|
||||
* Enter a docker image `--docker nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04`
|
||||
Execute the `clearml-session` command with the following command line options:
|
||||
|
||||
* Enter required python packages `--packages "clearml" "tensorflow>=2.2" "keras"`
|
||||
```bash
|
||||
clearml-session --docker nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 --packages "clearml" "tensorflow>=2.2" "keras" --queue default
|
||||
```
|
||||
|
||||
* Specify the resource queue `--queue default`.
|
||||
* Enter a docker image `--docker nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04`
|
||||
|
||||
<br/>
|
||||
* Enter required python packages `--packages "clearml" "tensorflow>=2.2" "keras"`
|
||||
|
||||
:::note
|
||||
There is an option to enter a project name using `--project <name>`. If no project is inputted, the default project
|
||||
name is "DevOps"
|
||||
:::
|
||||
* Specify the resource queue `--queue default`.
|
||||
|
||||
1. After launching the command, the `clearml-agent` listening to the `default` queue spins a remote Jupyter environment
|
||||
with the specifications. It will automatically connect to the docker on the remote machine.
|
||||
:::note
|
||||
There is an option to enter a project name using `--project <name>`. If no project is input, the default project
|
||||
name is "DevOps"
|
||||
:::
|
||||
|
||||
The terminal should return output with the session's configuration details, which should look something like this:
|
||||
After launching the command, the `clearml-agent` listening to the `default` queue spins a remote Jupyter environment with
|
||||
the specifications. It will automatically connect to the docker on the remote machine.
|
||||
|
||||
```console
|
||||
Interactive session config:
|
||||
The terminal should return output with the session's configuration details, which should look something like this:
|
||||
|
||||
```console
|
||||
Interactive session config:
|
||||
{
|
||||
"base_task_id": null,
|
||||
"git_credentials": false,
|
||||
@ -50,43 +51,50 @@ where a `clearml-agent` will run and spin an instance of the remote session.
|
||||
"queue": "default",
|
||||
"vscode_server": true
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
1. Press `Y` when the CLI will ask whether to `Launch interactive session [Y]/n?`. Press 'Y' or 'Enter'.
|
||||
### Step 2: Launch interactive session
|
||||
|
||||
The terminal should output information regarding the status of the environment-building process, which should look
|
||||
something like this:
|
||||
When the CLI asks whether to `Launch interactive session [Y]/n?`, press 'Y' or 'Enter'.
|
||||
|
||||
```console
|
||||
Creating new session
|
||||
New session created [id=35c0af81ae6541589dbae1efb747f388]
|
||||
Waiting for remote machine allocation [id=35c0af81ae6541589dbae1efb747f388]
|
||||
.Status [queued]
|
||||
...Status [in_progress]
|
||||
Remote machine allocated
|
||||
Setting remote environment [Task id=35c0af81ae6541589dbae1efb747f388]
|
||||
Setup process details: https://app.community.clear.ml/projects/60893b87b0b642679fde00db96e90359/experiments/35c0af81ae6541589dbae1efb747f388/output/log
|
||||
Waiting for environment setup to complete [usually about 20-30 seconds]
|
||||
```
|
||||
The terminal should output information regarding the status of the environment-building process, which should look
|
||||
something like this:
|
||||
|
||||
Then the CLI will output a link to the ready environment:
|
||||
```console
|
||||
Interactive session is running:
|
||||
SSH: ssh root@localhost -p 8022 [password: c5d19b3c0fa9784ba4f6aeb568c1e036a4fc2a4bc7f9bfc54a2c198d64ceb9c8]
|
||||
Jupyter Lab URL: http://localhost:8878/?token=ff7e5e8b9e5493a01b1a72530d18181320630b95f442b419
|
||||
VSCode server available at http://localhost:8898/
|
||||
```
|
||||
```console
|
||||
Creating new session
|
||||
New session created [id=35c0af81ae6541589dbae1efb747f388]
|
||||
Waiting for remote machine allocation [id=35c0af81ae6541589dbae1efb747f388]
|
||||
.Status [queued]
|
||||
...Status [in_progress]
|
||||
Remote machine allocated
|
||||
Setting remote environment [Task id=35c0af81ae6541589dbae1efb747f388]
|
||||
Setup process details: https://app.community.clear.ml/projects/60893b87b0b642679fde00db96e90359/experiments/35c0af81ae6541589dbae1efb747f388/output/log
|
||||
Waiting for environment setup to complete [usually about 20-30 seconds]
|
||||
```
|
||||
|
||||
1. Click on the JupyterLab link, which will open the remote session
|
||||
### Step 3: Connect to remote notebook
|
||||
|
||||
1. Now, let's execute some code in the remote session! Open up a new Notebook.
|
||||
Then the CLI will output a link to the ready environment:
|
||||
|
||||
```console
|
||||
Interactive session is running:
|
||||
SSH: ssh root@localhost -p 8022 [password: c5d19b3c0fa9784ba4f6aeb568c1e036a4fc2a4bc7f9bfc54a2c198d64ceb9c8]
|
||||
Jupyter Lab URL: http://localhost:8878/?token=ff7e5e8b9e5493a01b1a72530d18181320630b95f442b419
|
||||
VSCode server available at http://localhost:8898/
|
||||
```
|
||||
|
||||
1. In the first cell of the notebook, clone the [ClearML Repo](https://github.com/allegroai/events).
|
||||
Click on the JupyterLab link, which will open the remote session
|
||||
|
||||
Now, let's execute some code in the remote session!
|
||||
|
||||
### Step 4: Execute code
|
||||
|
||||
1. Open up a new Notebook.
|
||||
|
||||
1. In the first cell of the notebook, clone the [ClearML Repo](https://github.com/allegroai/clearml).
|
||||
|
||||
!git clone https://github.com/allegroai/clearml.git
|
||||
|
||||
|
||||
1. In the second cell of the notebook, we are going to run this [script](https://github.com/allegroai/clearml/blob/master/examples/frameworks/keras/keras_tensorboard.py)
|
||||
from the repository that we cloned.
|
||||
|
||||
@ -95,11 +103,13 @@ where a `clearml-agent` will run and spin an instance of the remote session.
|
||||
Look in the script, and notice that it makes use of ClearML, Keras, and TensorFlow, but we don't need to install these
|
||||
packages in Jupyter, because we specified them in the `--packages` flag of `clearml-session`.
|
||||
|
||||
1. To shut down the remote session, which will free the `clearml-agent` and close the CLI. Enter "Shutdown".
|
||||
### Step 5: Shut down remote session
|
||||
|
||||
```console
|
||||
Connection is up and running
|
||||
Enter "r" (or "reconnect") to reconnect the session (for example after suspend)
|
||||
Ctrl-C (or "quit") to abort (remote session remains active)
|
||||
or "Shutdown" to shutdown remote interactive session
|
||||
```
|
||||
To shut down the remote session, which will free the `clearml-agent` and close the CLI, enter "Shutdown".
|
||||
|
||||
```console
|
||||
Connection is up and running
|
||||
Enter "r" (or "reconnect") to reconnect the session (for example after suspend)
|
||||
Ctrl-C (or "quit") to abort (remote session remains active)
|
||||
or "Shutdown" to shutdown remote interactive session
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user