clearml-docs/docs/integrations/mmcv.md

49 lines
1.9 KiB
Markdown
Raw Normal View History

2023-06-22 13:08:26 +00:00
---
2023-10-24 10:51:55 +00:00
title: MMCV
2023-06-22 13:08:26 +00:00
---
2023-08-15 16:00:06 +00:00
:::tip
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md) for setup
instructions.
:::
2023-10-24 10:51:55 +00:00
[MMCV](https://github.com/open-mmlab/mmcv) is a computer vision framework developed by OpenMMLab. You can integrate ClearML into your
2023-06-22 13:08:26 +00:00
code using the `mmcv` package's [`ClearMLLoggerHook`](https://mmcv.readthedocs.io/en/master/_modules/mmcv/runner/hooks/logger/clearml.html)
class. This class is used to create a ClearML Task and to automatically log metrics.
For example, the following code sets up the configuration for logging metrics periodically to ClearML, and then registers
the ClearML hook to a [runner](https://mmcv.readthedocs.io/en/v1.3.8/runner.html?highlight=register_training_hooks#epochbasedrunner),
which manages training in `mmcv`:
```python
log_config = dict(
interval=100,
hooks=[
dict(
type='ClearMLLoggerHook',
init_kwargs=dict(
project_name='examples',
task_name='OpenMMLab cifar10',
output_uri=True
)
),
]
)
# register hooks to runner and those hooks will be invoked automatically
runner.register_training_hooks(
lr_config=lr_config,
optimizer_config=optimizer_config,
checkpoint_config=checkpoint_config,
log_config=log_config # ClearMLLogger hook
)
```
The `init_kwargs` dictionary can include any parameter from [`Task.init()`](../references/sdk/task.md#taskinit).
This creates a [ClearML Task](../fundamentals/task.md) `OpenMMLab cifar10` in the `examples` project.
You can view the captured metrics in the experiment's **Scalars** tab in the [WebApp](../webapp/webapp_overview.md).
![OpenMMLab scalars](../img/itegration_openmmlab_scalars.png)
2023-10-24 10:51:55 +00:00
See MMCV code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/openmmlab/openmmlab_cifar10.py).