2022-01-02 14:23:06 +00:00
---
2023-07-31 09:32:51 +00:00
title: XGBoost Metrics
2022-01-02 14:23:06 +00:00
---
2025-02-13 11:21:35 +00:00
The [xgboost_metrics.py ](https://github.com/clearml/clearml/blob/master/examples/frameworks/xgboost/xgboost_metrics.py )
2022-01-02 14:23:06 +00:00
example demonstrates the integration of ClearML into code that uses XGBoost to train a network on the scikit-learn [iris ](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris )
classification dataset. ClearML automatically captures models and scalars logged with XGBoost.
2025-02-06 15:31:11 +00:00
When the script runs, it creates a ClearML task named `xgboost metric auto reporting` in
2022-01-02 14:23:06 +00:00
the `examples` project.
## Scalars
ClearML automatically captures scalars logged with XGBoost, which can be visualized in plots in the
2025-02-06 15:31:11 +00:00
ClearML WebApp, in the task's **SCALARS** tab.
2022-01-02 14:23:06 +00:00

## Models
ClearML automatically captures the model logged using the `xgboost.save` method, and saves it as an artifact.
2025-02-06 15:31:11 +00:00
View saved snapshots in the task's **ARTIFACTS** tab.
2022-01-02 14:23:06 +00:00

To view the model details, click the model name in the **ARTIFACTS** page, which will open the model's info tab. Alternatively, download the model.

## Console
2025-02-06 15:31:11 +00:00
All console output during the script's execution appears in the task's **CONSOLE** page.
2022-01-02 14:23:06 +00:00
