2021-05-13 23:48:51 +00:00
---
title: PyTorch MNIST
---
The [pytorch_mnist.py ](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_mnist.py ) example
demonstrates the integration of **ClearML** into code that uses PyTorch.
The example script does the following:
2021-08-31 08:09:29 +00:00
* Trains a simple deep neural network on the PyTorch built-in [MNIST ](https://pytorch.org/vision/stable/datasets.html#mnist )
2021-05-13 23:48:51 +00:00
dataset.
* Creates an experiment named `pytorch mnist train` , which is associated with the `examples` project.
2022-01-13 07:42:36 +00:00
* ClearML automatically logs `argparse` command line options, and models (and their snapshots) created by PyTorch
* Additional metrics are logged by calling the [Logger.report_scalar ](../../../references/sdk/logger.md#report_scalar ) method.
2021-05-13 23:48:51 +00:00
## Scalars
In the example script's `train` function, the following code explicitly reports scalars to **ClearML** :
```python
Logger.current_logger().report_scalar(
2022-01-13 07:42:36 +00:00
"train", "loss", iteration=(epoch * len(train_loader) + batch_idx), value=loss.item()
)
2021-05-13 23:48:51 +00:00
```
In the `test` method, the code explicitly reports `loss` and `accuracy` scalars.
```python
Logger.current_logger().report_scalar(
2022-01-13 07:42:36 +00:00
"test", "loss", iteration=epoch, value=test_loss
)
2021-05-13 23:48:51 +00:00
Logger.current_logger().report_scalar(
2022-01-13 07:42:36 +00:00
"test", "accuracy", iteration=epoch, value=(correct / len(test_loader.dataset))
)
2021-05-13 23:48:51 +00:00
```
These scalars can be visualized in plots, which appear in the **ClearML web UI** , in the experiment's
page ** >** **RESULTS** ** >** **SCALARS** .
![image ](../../../img/examples_pytorch_mnist_07.png )
## Hyperparameters
**ClearML** automatically logs command line options defined with `argparse` . They appear in **CONFIGURATIONS** ** >** **HYPER PARAMETERS** ** >** **Args** .
![image ](../../../img/examples_pytorch_mnist_01.png )
2021-05-18 22:31:01 +00:00
## Console
2021-05-13 23:48:51 +00:00
2021-05-18 22:31:01 +00:00
Text printed to the console for training progress, as well as all other console output, appear in **RESULTS** ** >** **CONSOLE** .
2021-05-13 23:48:51 +00:00
![image ](../../../img/examples_pytorch_mnist_06.png )
## Artifacts
2022-01-13 07:42:36 +00:00
Models created by the experiment appear in the experiment’ s **ARTIFACTS** tab. ClearML automatically logs and tracks models
and any snapshots created using PyTorch.
2021-05-13 23:48:51 +00:00
![image ](../../../img/examples_pytorch_mnist_02.png )
2022-01-13 07:42:36 +00:00
Clicking on the model name takes you to the [model’ s page ](../../../webapp/webapp_model_viewing.md ), where you can view
the model’ s details and access the model.
2021-05-13 23:48:51 +00:00
![image ](../../../img/examples_pytorch_mnist_03.png )