clearml-agent/clearml_agent/backend_api/config/default/agent.conf

186 lines
8.1 KiB
Plaintext

{
# unique name of this worker, if None, created based on hostname:process_id
# Override with os environment: CLEARML_WORKER_ID
# worker_id: "clearml-agent-machine1:gpu0"
worker_id: ""
# worker name, replaces the hostname when creating a unique name for this worker
# Override with os environment: CLEARML_WORKER_NAME
# worker_name: "clearml-agent-machine1"
worker_name: ""
# Set GIT user/pass credentials (if user/pass are set, GIT protocol will be set to https)
# leave blank for GIT SSH credentials (set force_git_ssh_protocol=true to force SSH protocol)
# git_user: ""
# git_pass: ""
# git_host: ""
# Force GIT protocol to use SSH regardless of the git url (Assumes GIT user/pass are blank)
force_git_ssh_protocol: false
# Force a specific SSH port when converting http to ssh links (the domain is kept the same)
# force_git_ssh_port: 0
# Force a specific SSH username when converting http to ssh links (the default username is 'git')
# force_git_ssh_user: git
# Set the python version to use when creating the virtual environment and launching the experiment
# Example values: "/usr/bin/python3" or "/usr/local/bin/python3.6"
# The default is the python executing the clearml_agent
python_binary: ""
# select python package manager:
# currently supported pip and conda
# poetry is used if pip selected and repository contains poetry.lock file
package_manager: {
# supported options: pip, conda, poetry
type: pip,
# specify pip version to use (examples "<20", "==19.3.1", "", empty string will install the latest version)
pip_version: "<20.2",
# virtual environment inheres packages from system
system_site_packages: false,
# install with --upgrade
force_upgrade: false,
# additional artifact repositories to use when installing python packages
# extra_index_url: ["https://allegroai.jfrog.io/clearmlai/api/pypi/public/simple"]
# additional conda channels to use when installing with conda package manager
conda_channels: ["pytorch", "conda-forge", "defaults", ]
# If set to true, Task's "installed packages" are ignored,
# and the repository's "requirements.txt" is used instead
# force_repo_requirements_txt: false
# set the priority packages to be installed before the rest of the required packages
# priority_packages: ["cython", "numpy", "setuptools", ]
# set the optional priority packages to be installed before the rest of the required packages,
# In case a package installation fails, the package will be ignored,
# and the virtual environment process will continue
# priority_optional_packages: ["pygobject", ]
# set the post packages to be installed after all the rest of the required packages
# post_packages: ["horovod", ]
# set the optional post packages to be installed after all the rest of the required packages,
# In case a package installation fails, the package will be ignored,
# and the virtual environment process will continue
# post_optional_packages: []
# set to True to support torch nightly build installation,
# notice: torch nightly builds are ephemeral and are deleted from time to time
torch_nightly: false,
},
# target folder for virtual environments builds, created when executing experiment
venvs_dir = ~/.clearml/venvs-builds
# cached virtual environment folder
venvs_cache: {
# maximum number of cached venvs
max_entries: 10
# minimum required free space to allow for cache entry, disable by passing 0 or negative value
free_space_threshold_gb: 2.0
# unmark to enable virtual environment caching
# path: ~/.clearml/venvs-cache
},
# cached git clone folder
vcs_cache: {
enabled: true,
path: ~/.clearml/vcs-cache
},
# use venv-update in order to accelerate python virtual environment building
# Still in beta, turned off by default
venv_update: {
enabled: false,
},
# cached folder for specific python package download (used for pytorch package caching)
pip_download_cache {
enabled: true,
path: ~/.clearml/pip-download-cache
},
translate_ssh: true,
# reload configuration file every daemon execution
reload_config: false,
# pip cache folder mapped into docker, used for python package caching
docker_pip_cache = ~/.clearml/pip-cache
# apt cache folder mapped into docker, used for ubuntu package caching
docker_apt_cache = ~/.clearml/apt-cache
# optional arguments to pass to docker image
# these are local for this agent and will not be updated in the experiment's docker_cmd section
# extra_docker_arguments: ["--ipc=host", ]
# optional shell script to run in docker when started before the experiment is started
# extra_docker_shell_script: ["apt-get install -y bindfs", ]
# Install the required packages for opencv libraries (libsm6 libxext6 libxrender-dev libglib2.0-0),
# for backwards compatibility reasons, true as default,
# change to false to skip installation and decrease docker spin up time
# docker_install_opencv_libs: true
# optional uptime configuration, make sure to use only one of 'uptime/downtime' and not both.
# If uptime is specified, agent will actively poll (and execute) tasks in the time-spans defined here.
# Outside of the specified time-spans, the agent will be idle.
# Defined using a list of items of the format: "<hours> <days>".
# hours - use values 0-23, single values would count as start hour and end at midnight.
# days - use days in abbreviated format (SUN-SAT)
# use '-' for ranges and ',' to separate singular values.
# for example, to enable the workers every Sunday and Tuesday between 17:00-20:00 set uptime to:
# uptime: ["17-20 SUN,TUE"]
# optional downtime configuration, can be used only when uptime is not used.
# If downtime is specified, agent will be idle in the time-spans defined here.
# Outside of the specified time-spans, the agent will actively poll (and execute) tasks.
# Use the same format as described above for uptime
# downtime: []
# set to true in order to force "docker pull" before running an experiment using a docker image.
# This makes sure the docker image is updated.
docker_force_pull: false
default_docker: {
# default docker image to use when running in docker mode
image: "nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04"
# optional arguments to pass to docker image
# arguments: ["--ipc=host", ]
}
# set the OS environments based on the Task's Environment section before launching the Task process.
enable_task_env: false
# set the initial bash script to execute at the startup of any docker.
# all lines will be executed regardless of their exit code.
# {python_single_digit} is translated to 'python3' or 'python2' according to requested python version
# docker_init_bash_script = [
# "echo 'Binary::apt::APT::Keep-Downloaded-Packages \"true\";' > /etc/apt/apt.conf.d/docker-clean",
# "chown -R root /root/.cache/pip",
# "apt-get update",
# "apt-get install -y git libsm6 libxext6 libxrender-dev libglib2.0-0",
# "(which {python_single_digit} && {python_single_digit} -m pip --version) || apt-get install -y {python_single_digit}-pip",
# ]
# set the preprocessing bash script to execute at the startup of any docker.
# all lines will be executed regardless of their exit code.
# docker_preprocess_bash_script = [
# "echo \"starting docker\"",
#]
# If False replace \r with \n and display full console output
# default is True, report a single \r line in a sequence of consecutive lines, per 5 seconds.
# suppress_carriage_return: true
# cuda versions used for solving pytorch wheel packages
# should be detected automatically. Override with os environment CUDA_VERSION / CUDNN_VERSION
# cuda_version: 10.1
# cudnn_version: 7.6
}