mirror of
https://github.com/clearml/clearml-agent
synced 2025-04-03 12:20:58 +00:00
Fix setting tasks that someone just marked as aborted to started - only force Task to started after dequeuing it otherwise lease it as is
This commit is contained in:
parent
8f41002845
commit
ebc5944b44
@ -727,6 +727,7 @@ class Worker(ServiceCommandSection):
|
||||
self.is_venv_update = self._session.config.agent.venv_update.enabled
|
||||
self.poetry = PoetryConfig(self._session)
|
||||
self.docker_image_func = None
|
||||
self._patch_docker_cmd_func = None
|
||||
self._docker_image = None
|
||||
self._docker_arguments = None
|
||||
PackageManager.set_pip_version(self._session.config.get("agent.package_manager.pip_version", None))
|
||||
@ -740,7 +741,7 @@ class Worker(ServiceCommandSection):
|
||||
self._services_mode = None
|
||||
self._impersonate_as_task_owner = None
|
||||
self._worker_tags = None
|
||||
self._dynamic_gpus = None
|
||||
self._dynamic_gpus = None # valid options, True/False, "fractional"
|
||||
self._force_current_version = None
|
||||
self._redirected_stdout_file_no = None
|
||||
self._uptime_config = self._session.config.get("agent.uptime", None)
|
||||
@ -1050,6 +1051,10 @@ class Worker(ServiceCommandSection):
|
||||
session=task_session,
|
||||
)
|
||||
|
||||
# patch the full docker cmd if needed, notice this is done post reporting
|
||||
if self._patch_docker_cmd_func:
|
||||
full_docker_cmd = self._patch_docker_cmd_func(full_docker_cmd)
|
||||
|
||||
cmd = Argv(*full_docker_cmd, display_argv=display_docker_command)
|
||||
|
||||
print('Running Docker:\n{}\n'.format(str(cmd)))
|
||||
@ -1195,14 +1200,15 @@ class Worker(ServiceCommandSection):
|
||||
|
||||
# get current running instances
|
||||
available_gpus = None
|
||||
allocated_gpus = {}
|
||||
dynamic_gpus_worker_id = None
|
||||
if gpu_indexes and gpu_queues:
|
||||
available_gpus, gpu_queues = self._setup_dynamic_gpus(gpu_queues)
|
||||
available_gpus, gpu_queues = self._setup_dynamic_gpus(gpu_queues, gpu_indexes)
|
||||
# multi instance support
|
||||
self._services_mode = True
|
||||
|
||||
# last 64 tasks
|
||||
list_task_gpus_ids = {}
|
||||
dict_task_gpus_ids = {} # {str(gpu_indexes): task_id}
|
||||
try:
|
||||
while True:
|
||||
queue_tags = None
|
||||
@ -1226,7 +1232,7 @@ class Worker(ServiceCommandSection):
|
||||
|
||||
# update available gpus
|
||||
if gpu_queues:
|
||||
available_gpus = self._dynamic_gpu_get_available(gpu_indexes)
|
||||
available_gpus, allocated_gpus = self._dynamic_gpu_get_available(gpu_indexes)
|
||||
# if something went wrong, or we have no free gpus
|
||||
# start over from the highest priority queue
|
||||
if not available_gpus:
|
||||
@ -1255,11 +1261,21 @@ class Worker(ServiceCommandSection):
|
||||
if not len(response.queue.entries):
|
||||
continue
|
||||
# check if we do not have enough available gpus
|
||||
if gpu_queues[queue][0] > len(available_gpus):
|
||||
# Notice that gpu_queues[queue] is (min_gpu, max_gpu) that we should allocate
|
||||
# for a Task pulled from that queue, this means
|
||||
# gpu_queues[queue][0] is the minimum number of GPUs we need
|
||||
# and min_available_fract_gpu is the maximum number of fraction of GPU
|
||||
# and max_available_gpus is the maximum number of full GPUs we have
|
||||
min_available_fract_gpu = max([v for v in available_gpus.values()])
|
||||
max_available_gpus = sum([v for v in available_gpus.values() if v >= 1])
|
||||
if gpu_queues[queue][0] > max(float(max_available_gpus), min_available_fract_gpu):
|
||||
# not enough available_gpus, we should sleep and start over
|
||||
if self._daemon_foreground or worker_params.debug:
|
||||
print("Not enough free GPUs {}/{}, sleeping for {:.1f} seconds".format(
|
||||
len(available_gpus), gpu_queues[queue][0], self._polling_interval))
|
||||
max(float(max_available_gpus), min_available_fract_gpu),
|
||||
gpu_queues[queue][0],
|
||||
self._polling_interval)
|
||||
)
|
||||
sleep(self._polling_interval)
|
||||
break
|
||||
|
||||
@ -1317,17 +1333,85 @@ class Worker(ServiceCommandSection):
|
||||
dynamic_gpus_worker_id = self.worker_id
|
||||
# the following is only executed in dynamic gpus mode
|
||||
if gpu_queues and gpu_queues.get(queue):
|
||||
gpus = []
|
||||
fractions = []
|
||||
# pick the first available GPUs
|
||||
# gpu_queues[queue] = (min_gpus, max_gpus)
|
||||
# get as many gpus as possible with max_gpus as limit, the min is covered before
|
||||
gpus = available_gpus[:gpu_queues.get(queue)[1]]
|
||||
available_gpus = available_gpus[gpu_queues.get(queue)[1]:]
|
||||
# first check if the max_gpus is larger equal to 1 (if so, allocate full GPUs)
|
||||
if float(gpu_queues.get(queue)[1]) >= 1:
|
||||
gpus = [g for g, v in available_gpus.items() if v >= 1]
|
||||
if gpus:
|
||||
# get as many gpus as possible with max_gpus as limit, the min is covered before
|
||||
gpus = gpus[:int(gpu_queues.get(queue)[1])]
|
||||
fractions = [1] * len(gpus)
|
||||
# update available gpus
|
||||
available_gpus = {g: v for g, v in available_gpus.items() if g not in gpus}
|
||||
else:
|
||||
# we assume the minimum was < 1 GPU, otherwise why are we here
|
||||
pass
|
||||
|
||||
# if this is under 1 GPU
|
||||
if not gpus:
|
||||
# find the GPU with availability that covers the minimum
|
||||
_max_req_gpu = min(float(gpu_queues.get(queue)[1]), 1.)
|
||||
_min_req_gpu = float(gpu_queues.get(queue)[0])
|
||||
_potential_gpus = {
|
||||
g: (v - float(_max_req_gpu)) for g, v in available_gpus.items()
|
||||
if v >= float(_min_req_gpu)}
|
||||
# sort based on the least available that can fit the maximum
|
||||
# find the first instance that is positive or 0
|
||||
_potential_gpus = sorted(_potential_gpus.items(), key=lambda a: a[1])
|
||||
gpus = [(g, v) for g, v in _potential_gpus if v >= 0]
|
||||
if gpus:
|
||||
available_gpus[gpus[0][0]] -= _max_req_gpu
|
||||
gpus = [gpus[0][0]]
|
||||
fractions = [_max_req_gpu]
|
||||
else:
|
||||
gpus = [_potential_gpus[-1][0]]
|
||||
# this is where we need to decide on the actual granularity
|
||||
# now it is hardcoded to 1/8th
|
||||
_base_fract = 8
|
||||
avail_fract = int(float(available_gpus[_potential_gpus[-1][0]]) * _base_fract)
|
||||
fractions = [avail_fract/float(avail_fract)]
|
||||
available_gpus[_potential_gpus[-1][0]] -= fractions[0]
|
||||
|
||||
try:
|
||||
from clearml_agent_fractional_gpu import patch_docker_cmd_gpu_fraction # noqa
|
||||
# new docker image func
|
||||
self._patch_docker_cmd_func = lambda docker_cmd: (
|
||||
patch_docker_cmd_gpu_fraction(docker_cmd, gpu_fraction=fractions[0]))
|
||||
except Exception:
|
||||
print("Error! could not load clearml_agent_fractional_gpu module! "
|
||||
"failed configuring fractional GPU support")
|
||||
raise
|
||||
|
||||
self.set_runtime_properties(
|
||||
key='available_gpus', value=','.join(str(g) for g in available_gpus))
|
||||
key='available_gpus',
|
||||
value=','.join("{}_{}".format(g, str(f)[2:]) for g, f in available_gpus.items()))
|
||||
|
||||
# this is where we set the fractions as well as gpus
|
||||
Session.set_nvidia_visible_env(gpus)
|
||||
list_task_gpus_ids.update({str(g): task_id for g in gpus})
|
||||
self.worker_id = ':'.join(
|
||||
self.worker_id.split(':')[:-1] + ['gpu'+','.join(str(g) for g in gpus)])
|
||||
|
||||
if fractions and min(fractions) < 1:
|
||||
# we assume a single gpu in the list
|
||||
gpu_idx_fract = ["{}.{}".format(g, str(f)[2:]) for g, f in zip(gpus, fractions)]
|
||||
# check a new available unique name (id) for us
|
||||
from string import ascii_lowercase
|
||||
for x in ascii_lowercase:
|
||||
if gpu_idx_fract[0]+x not in allocated_gpus:
|
||||
gpu_idx_fract[0] = gpu_idx_fract[0]+x
|
||||
break
|
||||
|
||||
# add the new task
|
||||
allocated_gpus[gpu_idx_fract[0]] = fractions[0]
|
||||
dict_task_gpus_ids.update({str(g): task_id for g in gpu_idx_fract})
|
||||
self.worker_id = ':'.join(
|
||||
self.worker_id.split(':')[:-1] + ['gpu'+','.join(str(g) for g in gpu_idx_fract)])
|
||||
else:
|
||||
# update the task list
|
||||
dict_task_gpus_ids.update({str(g): task_id for g in gpus})
|
||||
self.worker_id = ':'.join(
|
||||
self.worker_id.split(':')[:-1] + ['gpu'+','.join(str(g) for g in gpus)])
|
||||
|
||||
self.send_logs(
|
||||
task_id=task_id,
|
||||
@ -1338,10 +1422,14 @@ class Worker(ServiceCommandSection):
|
||||
|
||||
self.run_one_task(queue, task_id, worker_params, task_session=task_session)
|
||||
|
||||
# restore back worker_id / GPUs
|
||||
if gpu_queues:
|
||||
self.worker_id = dynamic_gpus_worker_id
|
||||
Session.set_nvidia_visible_env(org_gpus)
|
||||
|
||||
# clear docker patching function (if exists
|
||||
self._patch_docker_cmd_func = None
|
||||
|
||||
self.report_monitor(ResourceMonitor.StatusReport(queues=self.queues))
|
||||
|
||||
queue_tags = None
|
||||
@ -1362,7 +1450,7 @@ class Worker(ServiceCommandSection):
|
||||
finally:
|
||||
# if we are in dynamic gpus mode, shutdown all active runs
|
||||
if self.docker_image_func:
|
||||
for t_id in set(list_task_gpus_ids.values()):
|
||||
for t_id in set(dict_task_gpus_ids.values()):
|
||||
if shutdown_docker_process(docker_cmd_contains='--id {}\'\"'.format(t_id)):
|
||||
self.handle_task_termination(task_id=t_id, exit_code=0, stop_reason=TaskStopReason.stopped)
|
||||
else:
|
||||
@ -1380,8 +1468,8 @@ class Worker(ServiceCommandSection):
|
||||
self._unregister()
|
||||
|
||||
def _dynamic_gpu_get_available(self, gpu_indexes):
|
||||
# cast to string
|
||||
gpu_indexes = [str(g) for g in gpu_indexes]
|
||||
# key: cast to string, value: 1 (i.e. gull GPU)
|
||||
gpu_indexes = {str(g): 1 for g in gpu_indexes}
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
response = self._session.send_api(workers_api.GetAllRequest(last_seen=600))
|
||||
@ -1392,29 +1480,50 @@ class Worker(ServiceCommandSection):
|
||||
our_workers = [
|
||||
w.id for w in response.workers
|
||||
if w.id.startswith(worker_name) and w.id != self.worker_id]
|
||||
gpus = []
|
||||
gpus = {}
|
||||
allocated_gpus = {}
|
||||
gpu_pattern = re.compile(r"\d+[.]?\d*[a-z]?")
|
||||
fract_gpu_pattern = re.compile(r"\d+[.]?\d*[a-z]+")
|
||||
for w in our_workers:
|
||||
for g in w.split(':')[-1].lower().replace('gpu', '').split(','):
|
||||
try:
|
||||
# verify "int.int"
|
||||
gpus += [str(g).strip()] if float(g.strip()) >= 0 else []
|
||||
# verify pattern "int.int" or "int.int[a-z]"
|
||||
gpu_idx_name = g.strip()
|
||||
if gpu_pattern.fullmatch(gpu_idx_name):
|
||||
# check if this is a fraction
|
||||
if fract_gpu_pattern.fullmatch(gpu_idx_name):
|
||||
gpu_idx = gpu_idx_name.split(".")[0]
|
||||
gpu_fract = float("0.{}".format(gpu_idx_name.split(".")[-1][:-1]))
|
||||
# the entire gpu
|
||||
gpus[gpu_idx] = gpus.get(gpu_idx, 0) + gpu_fract
|
||||
# the gpu fraction uid eg 0.25a
|
||||
allocated_gpus[gpu_idx_name] = gpu_fract
|
||||
else:
|
||||
# or a static MIG slice
|
||||
gpus[gpu_idx_name] = 1
|
||||
allocated_gpus[gpu_idx_name] = 1
|
||||
else:
|
||||
print("INFO: failed parsing fractional GPU '{}' - skipping".format(g))
|
||||
except (ValueError, TypeError):
|
||||
print("INFO: failed parsing GPU int('{}') - skipping".format(g))
|
||||
available_gpus = list(set(gpu_indexes) - set(gpus))
|
||||
|
||||
return available_gpus
|
||||
# remove the GPUs we have workers running on
|
||||
available_gpus = {g: (v - gpus.get(g, 0)) for g, v in gpu_indexes.items() if (v - gpus.get(g, 0)) > 0}
|
||||
return available_gpus, allocated_gpus
|
||||
|
||||
def _setup_dynamic_gpus(self, gpu_queues):
|
||||
def _setup_dynamic_gpus(self, gpu_queues, gpu_indexes):
|
||||
available_gpus = self.get_runtime_properties()
|
||||
if available_gpus is None:
|
||||
raise ValueError("Dynamic GPU allocation is not supported by your ClearML-server")
|
||||
available_gpus = [prop["value"] for prop in available_gpus if prop["key"] == 'available_gpus']
|
||||
if available_gpus:
|
||||
gpus = []
|
||||
for g in available_gpus[-1].split(','):
|
||||
gpus = {}
|
||||
for g_v in available_gpus[-1].split(','):
|
||||
g, v = g_v.split("_")
|
||||
try:
|
||||
# verify "int.int"
|
||||
gpus += [str(g).strip()] if float(g.strip()) >= 0 else []
|
||||
# verify "int.int_float"
|
||||
if float(g.strip()) >= 0:
|
||||
gpus[g.strip()] = float("0."+v)
|
||||
except (ValueError, TypeError):
|
||||
print("INFO: failed parsing GPU int('{}') - skipping".format(g))
|
||||
available_gpus = gpus
|
||||
@ -1423,10 +1532,11 @@ class Worker(ServiceCommandSection):
|
||||
gpu_queues = dict(gpu_queues)
|
||||
|
||||
if not self.set_runtime_properties(
|
||||
key='available_gpus', value=','.join(str(g) for g in available_gpus)):
|
||||
key='available_gpus', value=','.join("{}_{}".format(g, str(v)[2:]) for g, v in available_gpus.items())):
|
||||
raise ValueError("Dynamic GPU allocation is not supported by your ClearML-server")
|
||||
|
||||
self.cluster_report_monitor(available_gpus=available_gpus, gpu_queues=gpu_queues)
|
||||
# because it sets the MAX not the actual available (i.e. free) GPUS
|
||||
self.cluster_report_monitor(available_gpus=gpu_indexes, gpu_queues=gpu_queues)
|
||||
|
||||
return available_gpus, gpu_queues
|
||||
|
||||
@ -1606,6 +1716,10 @@ class Worker(ServiceCommandSection):
|
||||
if self._services_mode and dynamic_gpus:
|
||||
raise ValueError("Combining --dynamic-gpus and --services-mode is not supported")
|
||||
|
||||
if self._dynamic_gpus == "fractional" and not docker:
|
||||
raise ValueError("Fractional GPUs are only supported in docker-mode, "
|
||||
"add --docker to allow docker-mode operation")
|
||||
|
||||
# We are not running a daemon we are killing one.
|
||||
# find the pid send termination signal and leave
|
||||
if kwargs.get('stop', False) is not False:
|
||||
@ -1774,6 +1888,7 @@ class Worker(ServiceCommandSection):
|
||||
if not dynamic_gpus:
|
||||
return None, None, queues
|
||||
|
||||
has_fractional = False
|
||||
queue_names = [q.name for q in queues]
|
||||
if not all('=' in q for q in queue_names):
|
||||
raise ValueError("using --dynamic-gpus, --queue [{}], "
|
||||
@ -1802,9 +1917,12 @@ class Worker(ServiceCommandSection):
|
||||
for s in queue_names:
|
||||
s_p = s.split('=')
|
||||
name = s[:-1 - len(s_p[-1])]
|
||||
min_max_g = int(s_p[-1].split('-')[0] or 1), int(s_p[-1].split('-')[-1])
|
||||
min_max_g = float(s_p[-1].split('-')[0] or 1), float(s_p[-1].split('-')[-1])
|
||||
if min(min_max_g) <= 0:
|
||||
raise ValueError("Parsing min/max number of gpus <= 0 is not allowed: \"{}\"".format(s))
|
||||
if any(g for g in min_max_g if 1 < g != int(g)):
|
||||
raise ValueError("Parsing min/max number of gpus, fractional gpu cannot be > 1: \"{}\"".format(s))
|
||||
has_fractional = min(min_max_g) < 1
|
||||
dynamic_gpus.append((name, min_max_g,))
|
||||
queue_names = [q for q, _ in dynamic_gpus]
|
||||
# resolve queue ids
|
||||
@ -1814,15 +1932,16 @@ class Worker(ServiceCommandSection):
|
||||
# maintain original priority order
|
||||
queues = [q for q, _ in dynamic_gpus]
|
||||
|
||||
self._dynamic_gpus = True
|
||||
self._dynamic_gpus = "fractional" if has_fractional else True
|
||||
|
||||
return dynamic_gpus, gpu_indexes, queues
|
||||
|
||||
def _register_dynamic_gpus(self, gpu_indexes):
|
||||
# test server support
|
||||
available_gpus = self._dynamic_gpu_get_available(gpu_indexes)
|
||||
available_gpus, allocated_gpus = self._dynamic_gpu_get_available(gpu_indexes)
|
||||
if not self.set_runtime_properties(
|
||||
key='available_gpus', value=','.join(str(g) for g in available_gpus)):
|
||||
key='available_gpus',
|
||||
value=','.join("{}_{}".format(g, str(v)[2:]) for g, v in available_gpus.items())):
|
||||
raise ValueError("Dynamic GPU allocation is not supported by your ClearML-server")
|
||||
|
||||
def report_monitor(self, report):
|
||||
@ -2484,13 +2603,15 @@ class Worker(ServiceCommandSection):
|
||||
raise ValueError(
|
||||
"Execution required enqueued task, but task id={} is not queued.".format(current_task.id)
|
||||
)
|
||||
# Set task status to started to prevent any external monitoring from killing it
|
||||
self._session.api_client.tasks.started(
|
||||
task=current_task.id,
|
||||
status_reason="starting execution soon",
|
||||
status_message="",
|
||||
force=True,
|
||||
)
|
||||
# only force set started if we actually dequeued it (which would have changed the state)
|
||||
if res.ok and res.json().get("data", {}).get("updated", 0):
|
||||
# Set task status to started to prevent any external monitoring from killing it
|
||||
self._session.api_client.tasks.started(
|
||||
task=current_task.id,
|
||||
status_reason="starting execution soon",
|
||||
status_message="",
|
||||
force=True,
|
||||
)
|
||||
except Exception:
|
||||
if require_queue:
|
||||
raise
|
||||
|
Loading…
Reference in New Issue
Block a user