From 75f5814f9f316ba3322ef4574f83ed417c5ff195 Mon Sep 17 00:00:00 2001 From: Allegro AI <51604379+allegroai-git@users.noreply.github.com> Date: Wed, 19 Oct 2022 02:44:53 +0300 Subject: [PATCH] Update README.md --- README.md | 19 +++++++++++-------- 1 file changed, 11 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 30fe1ac..11dbf01 100644 --- a/README.md +++ b/README.md @@ -33,12 +33,12 @@ It is a zero configuration fire-and-forget execution agent, providing a full ML/ 1. ClearML Server [self-hosted](https://github.com/allegroai/clearml-server) or [free tier hosting](https://app.clear.ml) -2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine: +2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any CPU/GPU machine: on-premises / cloud / ...) 3. Create a [job](https://github.com/allegroai/clearml/docs/clearml-task.md) or Add [ClearML](https://github.com/allegroai/clearml) to your code with just 2 lines 4. Change the [parameters](#using-the-clearml-agent) in the UI & schedule for [execution](#using-the-clearml-agent) (or - automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-)) + automate with a [pipelines](#automl-and-orchestration-pipelines-)) 5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer: "All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that" @@ -313,21 +313,24 @@ clearml-agent daemon --services-mode --detached --queue services --create-queue **Note**: It is the user's responsibility to make sure the proper tasks are pushed into the specified queue. -### AutoML and Orchestration Pipelines +### Orchestration and Pipelines -The ClearML Agent can also be used to implement AutoML orchestration and Experiment Pipelines in conjunction with the +The ClearML Agent can also be used to orchestrate and automate Pipelines in conjunction with the ClearML package. -Sample AutoML & Orchestration examples can be found in the -ClearML [example/automation](https://github.com/allegroai/clearml/tree/master/examples/automation) folder. +Sample automation examples can be found in the +ClearML [pipelines](https://github.com/allegroai/clearml/tree/master/examples/pipeline) / [automation](https://github.com/allegroai/clearml/tree/master/examples/automation) folder. -AutoML examples +HPO examples - [Toy Keras training experiment](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py) - In order to create an experiment-template in the system, this code must be executed once manually -- [Random Search over the above Keras experiment-template](https://github.com/allegroai/clearml/blob/master/examples/automation/manual_random_param_search_example.py) +- [Manual Search over the above Keras experiment-template](https://github.com/allegroai/clearml/blob/master/examples/automation/manual_random_param_search_example.py) - This example will create multiple copies of the Keras experiment-template, with different hyper-parameter combinations +- [Optimized Bayesian search over the above Keras experiment-template](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/hyper_parameter_optimizer.py) + - This example will create multiple copies of the Keras experiment-template, with different hyper-parameter combinations launch them on remote machines, monitor the metric (i.e. loss) decide which one has the best potential and abort the others + Experiment Pipeline examples