From 6563ce70c8ee375b0cc2f5050388bcd2d0dd9ab9 Mon Sep 17 00:00:00 2001 From: allegroai <> Date: Sat, 9 May 2020 20:12:53 +0300 Subject: [PATCH] Update README --- README.md | 29 +++++++++++++++++++---------- 1 file changed, 19 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index c8fb2cf..8b424a7 100644 --- a/README.md +++ b/README.md @@ -8,6 +8,8 @@ [![PyPI version shields.io](https://img.shields.io/pypi/v/trains-agent.svg)](https://img.shields.io/pypi/v/trains-agent.svg) [![PyPI status](https://img.shields.io/pypi/status/trains-agent.svg)](https://pypi.python.org/pypi/trains-agent/) +### Help improve Trains by filling our 2-min [user survey](https://allegro.ai/lp/trains-user-survey/) + **TRAINS Agent is an AI experiment cluster solution.** It is a zero configuration fire-and-forget execution agent, which combined with trains-server provides a full AI cluster solution. @@ -165,8 +167,9 @@ trains-agent daemon --queue default --foreground ``` For actual service mode, all the stdout will be stored automatically into a temporary file (no need to pipe) +Notice: with `--detached` flag, the *trains-agent* will be running in the background ```bash -trains-agent daemon --queue default +trains-agent daemon --detached --queue default ``` GPU allocation is controlled via the standard OS environment `NVIDIA_VISIBLE_DEVICES` or `--gpus` flag (or disabled with `--cpu-only`). @@ -175,15 +178,16 @@ If no flag is set, and `NVIDIA_VISIBLE_DEVICES` variable doesn't exist, all GPU' If `--cpu-only` flag is set, or `NVIDIA_VISIBLE_DEVICES` is an empty string (""), no gpu will be allocated for the `trains-agent` Example: spin two agents, one per gpu on the same machine: +Notice: with `--detached` flag, the *trains-agent* will be running in the background ```bash -trains-agent daemon --gpus 0 --queue default & -trains-agent daemon --gpus 1 --queue default & +trains-agent daemon --detached --gpus 0 --queue default +trains-agent daemon --detached --gpus 1 --queue default ``` Example: spin two agents, pulling from dedicated `dual_gpu` queue, two gpu's per agent ```bash -trains-agent daemon --gpus 0,1 --queue dual_gpu & -trains-agent daemon --gpus 2,3 --queue dual_gpu & +trains-agent daemon --detached --gpus 0,1 --queue dual_gpu +trains-agent daemon --detached --gpus 2,3 --queue dual_gpu ``` #### Starting the TRAINS Agent in docker mode @@ -194,20 +198,21 @@ trains-agent daemon --queue default --docker --foreground ``` For actual service mode, all the stdout will be stored automatically into a file (no need to pipe) +Notice: with `--detached` flag, the *trains-agent* will be running in the background ```bash -trains-agent daemon --queue default --docker +trains-agent daemon --detached --queue default --docker ``` Example: spin two agents, one per gpu on the same machine, with default nvidia/cuda docker: ```bash -trains-agent daemon --gpus 0 --queue default --docker nvidia/cuda & -trains-agent daemon --gpus 1 --queue default --docker nvidia/cuda & +trains-agent daemon --detached --gpus 0 --queue default --docker nvidia/cuda +trains-agent daemon --detached --gpus 1 --queue default --docker nvidia/cuda ``` Example: spin two agents, pulling from dedicated `dual_gpu` queue, two gpu's per agent, with default nvidia/cuda docker: ```bash -trains-agent daemon --gpus 0,1 --queue dual_gpu --docker nvidia/cuda & -trains-agent daemon --gpus 2,3 --queue dual_gpu --docker nvidia/cuda & +trains-agent daemon --detached --gpus 0,1 --queue dual_gpu --docker nvidia/cuda +trains-agent daemon --detached --gpus 2,3 --queue dual_gpu --docker nvidia/cuda ``` #### Starting the TRAINS Agent - Priority Queues @@ -259,3 +264,7 @@ Experiment Pipeline examples - This example will "process data", and once done, will launch a copy of the 'second step' experiment-template - [Second step experiment](https://github.com/allegroai/trains/blob/master/examples/automl/toy_base_task.py) - In order to create an experiment-template in the system, this code must be executed once manually + +# License + +Apache License, Version 2.0 (see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0.html) for more information)